CacheCloud Towards Speed of Light Datacenter Communication

Shelby Thomas Geoff Voelker George Porter

University of California, San Diego

The Speed of Light Baseline

The Speed of Light Baseline

[Singla Et. Al.]

Speed of Light in the Wide Area

Bufferbloat and congestion

DNS resolution

Distance

10x – 1000x slower than speed of light propagation in WAN

[Singla Et. Al.]

Speed of Light in the Wide Area

Bufferbloat and congestion

What about the Local Area?

Distance

10x – 1000x slower than speed of light propagation in WAN

[Singla Et. Al.]

Speed of Light in the Local Area

Bufferbloat and congestion

DNS resolution

Distance

Expectation: Datacenter applications are closer to the speed of light than wide area networks.

Speed of Light in the Local Area

Bufferbloat and congestion

DNS resolution

Distance

Reality: Datacenter applications are **10x – 1000x slower** than speed of light propagation in the LAN

Different Distances Same Performance Gap

[Coleman Et. Al.]

Datacenter applications do not run at nanosecond scale

100ns @ 20m

Datacenter applications do not run at nanosecond scale

100ns @ 20m

Application	Latency	Gap
Key Value Stores	4.3us – 100us	43x
Industry End- to-End RPC	75us	750x
Consensus	100us – 300us	1000x

Datacenter applications do not run at paposecond scale

How has our infrastructure evolved?

Application	Latency	Gap
Key Value Stores	4.3us – 100us	43x
Industry End- to-End RPC	75us	750x
Consensus	100us – 300us	1000x

[Mutlu Et. Al.]

Release Year

Speed of Light Propagation (100ns)

1GbE [10000ns] (MTU)

DRAM Latency?

DRAM Latency ~ 100ns

Interpacket Gap < DRAM Latency

Latency Convergence

Speed of Light Propagation [100ns]

40GbE/100GbE Interpacket gap [100ns]

DRAM Latency [100ns+]

DRAM accesses need to be minimized or eliminated

DRAM is the new Disk

How do we overcome DRAM limitation?

How do we overcome DRAM limitation? → **Pivot to SRAM**

How do we overcome DRAM limitation? → **Pivot to SRAM**

Faster than Light SRAM

Speed of Light Propagation [100ns]

100GbE Interpacket gap [100ns]

SRAM Latency [10ns]

SRAM Capacity Continues to Scale

Release Year

Conventional System Model

Missing is Expensive

Can we Predict L3 Misses Before They Happen?

Idea: Global View of L3 Caches Across Cluster

Closer Integration with Networks and Caches

Reroute Packets Based on In-Network Data

Improving Interconnects

Interconnects are Significant Bottlenecks

Speed of Light Propagation

CacheCloud Co-Packaging Network Interfaces and Cache

CacheCloud: Takeaways

We are more than an order of magnitude away from speed of light propagation

Most hardware components have stopped scaling while networks scale up

Cache is the new DRAM, DRAM is the new Disk

Architecture, Network and OS integration is crucial

Issues and Feedback for CacheCloud

Q: Won't this be solved with new hardware?

- SmartNICs, Accelerators, FPGAs, etc.
- > Coherency, programmability, size, and cost still a problem

Q: Datasets are too large....but do all applications have large dataset?

- Network function virtualization (NFV)
- Coordination services

Feedback:

- How do hardware accelerators (TPU) change network and end-host design?
- Starting from scratch what architecture should we build?
- Starting from scratch what network protocols should we build?

Thank You

