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Motivation:

Harnessing FPGAs in Datacenter
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Harnessing FPGAs in Datacenters: Why?

u Heterogeneous architecture: an “agreement” from the hardware 
community

Generalization Customization
TPU GPGPU FPGA

Sources: Google, NVIDIA, Intel, Bob Broderson, Berkeley Wireless group
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u Heterogeneous architecture: an “agreement” from the hardware 
community

u The FPGA-based cluster is a promising paradigm
§ Standalone FPGA accelerators demonstrate orders-of-magnitude performance/watt 

improvement

Harnessing FPGAs in Datacenters: Why?
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Harnessing FPGAs in Datacenters: Why?

u Heterogeneous architecture: an “agreement” from the hardware 
community

u The FPGA-based cluster is a promising paradigm
§ Standalone FPGA accelerators demonstrate orders-of-magnitude performance/watt 

improvement

§ FPGAs are reconfigurable
• A relatively “general” specialized device
• It is now in the cloud
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Challenge:

system integration - from kernel speedup to system acceleration
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Accelerator (FPGA)-as-a-Service

Client RM
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NM

Container
Container

Accelerator status
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NAM

FPGA

GPU

Global Accelerator Manager: accelerator-centric scheduling

Node Accelerator Manager:
local accelerator service management, JVM-to-ACC communication optimization 

GAM

NAM
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In terms of performance, there is much to say...

u Time breakdown of AES

§ Pack: app.-dep.; ~4GB/s 

§ Send (via socket): ~3GB/s

§ Usr->Kernel: ~6GB/s

§ DMA: ~5GB/s

§ Load: ~6GB/s (shd w/ Store)

§ Compute: 12.8GB/s
• >100x over CPU

§ …

§ 1/(1/4+1/3+…) = 0.47 GB/s

§ 27x performance loss!!!

Host

Kernel Memory Space

User Memory Space

JVM

JVM Buf

1 11
Native Buf2

10

Pinned Buf

3 9

Device

Device Memory

FPGA Fabric

FPGA Accelerator

BRAM and Flip-Flops

Pinned Buf

5 7

4

8

6



9

Verilog HDLC/C++ & 
Vendor APIsJava

JVM-FPGA Communication Pipelining
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JVM-FPGA Communication Pipelining

u Send + Pin => Send
§ Limitation of vendor APIs

u Load/Compute/Store => 
Compute
§ Overlapping comm. & comp.

u Programmer’s 
responsibility
§ Pack and unpack

§ Implementing an iterator 
interface to supply input 
data

§ Header + payload
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u The pipeline efficiency is bounded by the slowest stage
u In general, latency = time_setup (one-time) + payload_size * time_unit (linear)

u Adjust the payload sizes of different pipeline stages to balance their throughputs
u … but how to?
u Linear with constraints => linear programming

OpenCL Data Load Socket Data Send

In terms of performance, there is still much to say...
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Linear Programming Formulation
Problem Formulation:

maximize the pipeline throughput, i.e., 

Modeling of Data Transfer Stages:
for each individual data transfer stage, 

impose the payload size constraint, and model 
the relation between the payload size and the 
latency via linear equations: 

Modeling of Compute Stage:
profile a set of payload sizes (power of two), and 

model the latency of the compute stage into a 
selection equation with a set of binary variables: 

Modeling of Memory Constraints:
constrain the memory usage of the pipeline in both 

the CPU and the FPGA sides for separate-memory 
platforms, and in only the CPU side for shared-memory 
platfroms:
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Experimental Results

u A set of computation 
kernels as benchmarks

u Each with a Java program as 
the host

u Currently single-threaded, 
and will showcase the real-
application results in the 
near future
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Lessons Learned and Future Work

u Single thread -> multiple threads -> Mainstream frameworks
§ Modeling in the multithreaded scenario

§ Integration with frameworks like Apache Hadoop and Spark

u Adapt to various platforms
§ Latest platforms support FPGA’s direct access of user-space data, like IBM CAPI and 

Intel Xeon+FPGA

§ Amazon EC2 F1 instance brings virtualization into consideration

u JVM related improvement
§ Fast and safe allocation and management of native-space memory
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Discussion
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Problem Formulation:
maximize the pipeline throughput, i.e., 

Modeling of Data Transfer Stages:
for each individual data transfer stage, 

impose the payload size constraint, and
model the relation between the payload
size and the latency via linear equations:

Modeling of Compute Stage:
profile a set of payload sizes (power of two), 

and model the latency of the compute stage 
into a selection equation with a set of binary 
variables: 

Modeling of Memory Constraints:
constrain the memory usage of the pipeline 

in both the CPU and the FPGA sides for 
separate-memory platforms, and in only the 
CPU side for shared-memory platfroms:

Linear
Programming


