
From JVM to FPGA: Bridging Abstraction Hierarchy via 
Optimized Deep Pipelining

Jason Cong, Peng Wei and Cody Hao Yu

University of California, Los Angeles



2

Motivation:

Harnessing FPGAs in Datacenter



3

Harnessing FPGAs in Datacenters: Why?

u Heterogeneous architecture: an “agreement” from the hardware 
community

Generalization Customization
TPU GPGPU FPGA

Sources: Google, NVIDIA, Intel, Bob Broderson, Berkeley Wireless group



4

u Heterogeneous architecture: an “agreement” from the hardware 
community

u The FPGA-based cluster is a promising paradigm
§ Standalone FPGA accelerators demonstrate orders-of-magnitude performance/watt 

improvement

Harnessing FPGAs in Datacenters: Why?



5

Harnessing FPGAs in Datacenters: Why?

u Heterogeneous architecture: an “agreement” from the hardware 
community

u The FPGA-based cluster is a promising paradigm
§ Standalone FPGA accelerators demonstrate orders-of-magnitude performance/watt 

improvement

§ FPGAs are reconfigurable
• A relatively “general” specialized device
• It is now in the cloud



6

Challenge:

system integration - from kernel speedup to system acceleration



7

Accelerator (FPGA)-as-a-Service

Client RM
AM

NM

NM

Container
Container

Accelerator status

GAM
NAM

NAM

FPGA

GPU

Global Accelerator Manager: accelerator-centric scheduling

Node Accelerator Manager:
local accelerator service management, JVM-to-ACC communication optimization 

GAM

NAM



8

In terms of performance, there is much to say...

u Time breakdown of AES

§ Pack: app.-dep.; ~4GB/s 

§ Send (via socket): ~3GB/s

§ Usr->Kernel: ~6GB/s

§ DMA: ~5GB/s

§ Load: ~6GB/s (shd w/ Store)

§ Compute: 12.8GB/s
• >100x over CPU

§ …

§ 1/(1/4+1/3+…) = 0.47 GB/s

§ 27x performance loss!!!

Host

Kernel Memory Space

User Memory Space

JVM

JVM Buf

1 11
Native Buf2

10

Pinned Buf

3 9

Device

Device Memory

FPGA Fabric

FPGA Accelerator

BRAM and Flip-Flops

Pinned Buf

5 7

4

8

6



9

Verilog HDLC/C++ & 
Vendor APIsJava

JVM-FPGA Communication Pipelining

Pack

JVM Input
Buffer Queue

Send

Pageable Input
Buffer Queue

Pin

Kernel Input
Buffer Queue

DMA 
Forward

Device Input
Buffer Queue

Unpack

JVM Output
Buffer Queue

Recv

Pageable Output
Buffer Queue

Unpin

Kernel Output
Buffer Queue

DMA 
Backward

Device Output
Buffer Queue

Compute

Input
Java Objects

Output
Java Objects

Load

BRAM Input
Buffer Queue

Store

BRAM Output
Buffer Queue



10

JVM-FPGA Communication Pipelining

u Send + Pin => Send
§ Limitation of vendor APIs

u Load/Compute/Store => 
Compute
§ Overlapping comm. & comp.

u Programmer’s 
responsibility
§ Pack and unpack

§ Implementing an iterator 
interface to supply input 
data

§ Header + payload



11

u The pipeline efficiency is bounded by the slowest stage
u In general, latency = time_setup (one-time) + payload_size * time_unit (linear)

u Adjust the payload sizes of different pipeline stages to balance their throughputs
u … but how to?
u Linear with constraints => linear programming

OpenCL Data Load Socket Data Send

In terms of performance, there is still much to say...



12

Linear Programming Formulation
Problem Formulation:

maximize the pipeline throughput, i.e., 

Modeling of Data Transfer Stages:
for each individual data transfer stage, 

impose the payload size constraint, and model 
the relation between the payload size and the 
latency via linear equations: 

Modeling of Compute Stage:
profile a set of payload sizes (power of two), and 

model the latency of the compute stage into a 
selection equation with a set of binary variables: 

Modeling of Memory Constraints:
constrain the memory usage of the pipeline in both 

the CPU and the FPGA sides for separate-memory 
platforms, and in only the CPU side for shared-memory 
platfroms:



13

Experimental Results

u A set of computation 
kernels as benchmarks

u Each with a Java program as 
the host

u Currently single-threaded, 
and will showcase the real-
application results in the 
near future



14

Experimental Results

u A set of computation 
kernels as benchmarks

u Each with a Java program as 
the host

u Currently single-threaded, 
and will showcase the real-
application results in the 
near future



15

Lessons Learned and Future Work

u Single thread -> multiple threads -> Mainstream frameworks
§ Modeling in the multithreaded scenario

§ Integration with frameworks like Apache Hadoop and Spark

u Adapt to various platforms
§ Latest platforms support FPGA’s direct access of user-space data, like IBM CAPI and 

Intel Xeon+FPGA

§ Amazon EC2 F1 instance brings virtualization into consideration

u JVM related improvement
§ Fast and safe allocation and management of native-space memory



16

THANKS FOR YOUR ATTENTION.



17

Discussion

Host

Kernel Memory Space

User Memory Space

JVM

JVM Buf

1 11
Native Buf

2

10

Pinned Buf

3 9

Device

Device Memory

FPGA Fabric

FPGA Accelerator

BRAM and Flip-Flops

Pinned Buf

5 7

4

8

6

Verilog HDLC/C++ & 
Vendor APIsJava

Pack

JVM Input
Buffer Queue

Send

Pageable Input
Buffer Queue

Pin

Kernel Input
Buffer Queue

DMA 
Forward

Device Input
Buffer Queue

Unpack

JVM Output
Buffer Queue

Recv

Pageable Output
Buffer Queue

Unpin

Kernel Output
Buffer Queue

DMA 
Backward

Device Output
Buffer Queue

Compute

Input
Java Objects

Output
Java Objects

Load

BRAM Input
Buffer Queue

Store

BRAM Output
Buffer Queue

Problem Formulation:
maximize the pipeline throughput, i.e., 

Modeling of Data Transfer Stages:
for each individual data transfer stage, 

impose the payload size constraint, and
model the relation between the payload
size and the latency via linear equations:

Modeling of Compute Stage:
profile a set of payload sizes (power of two), 

and model the latency of the compute stage 
into a selection equation with a set of binary 
variables: 

Modeling of Memory Constraints:
constrain the memory usage of the pipeline 

in both the CPU and the FPGA sides for 
separate-memory platforms, and in only the 
CPU side for shared-memory platfroms:

Linear
Programming


