<D

N Center for Domain-
[\ Specific Computing

From JVM to FPGA: Bridging Abstraction Hierarchy via
Optimized Deep Pipelining

Jason Cong, Peng Wei and Cody Hao Yu

University of California, Los Angeles

UC COMPUTER SCIENCE DEPARTMENT



Motivation:

Harnessing FPGAs in Datacenter



Harnessing FPGAs in Datacenters: Why?

& Heterogeneous architecture: an “agreement” from the hardware
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Harnessing FPGAs in Datacenters: Why?

& Heterogeneous architecture: an “agreement” from the hardware
community

¢ The FPGA-based cluster is a promising paradigm

= Standalone FPGA accelerators demonstrate orders-of-magnitude performance/watt
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Harnessing FPGAs in Datacenters: Why?

& Heterogeneous a e hardware

community

¢ The FPGA-based
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Challenge:

system integration - from kernel speedup to system acceleration



Accelerator (FPGA)-as-a-Service
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GAM Global Accelerator Manager: accelerator-centric scheduling

Node Accelerator Manager:

NAM local accelerator service management, JVM-to-ACC communication optimization




In terms of performance, there is much to say...

¢ Time breakdown of AES

= Pack: app.-dep.; ~4GB/s e Host ~N 4 Device ™
" Send (via socket): ~3GB/s User Memory Space FPGA Fabric
= Usr->Kernel: “6GB/s [ ]
FPGA Accelerator
= DMA: ~5GB/s :
, (6]
= Load: ~“6GB/s (shd w/ Store) M BT Native Buf — anc‘erIip—FIops
= Compute: 12.8GB/s
® >100x over CPU Kernel Memory Jpace Device Memory
. Pinned Buf|< g »Pinned Buf
o ~/ o ~/

= 1/(1/4+1/3+...) =0.47 GB/s

= 27x performance loss!!!



JVM-FPGA Communication Pipelining
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JVM-FPGA Communication Pipelining

¢ Send + Pin =>Send o s
@
= Limitation of vendor APIs o | _
¢ Load/Com pUtE/StO re => ,av‘:"(;{’,j“:ds Send Queue CLinput Queue Load Queue

Compute E% ] —p> Send DMALoad
EO o E npack «

= Qverlapping comm. & comp. g

’ A 4
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responsibility Compute
= Pack and unpack ‘o
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In terms of performance, there is still much to say...

® ¢ ¢ ¢ o

The pipeline efficiency is bounded by the slowest stage

In general, latency = time_setup (one-time) + payload_size * time_unit (linear)
Adjust the payload sizes of different pipeline stages to balance their throughputs
... but how to?

Linear with constraints => linear programming
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Linear Programming Formulation

Problem Formulation:
maximize the pipeline throughput, i.e.,

Tk :Min(Tpack7 Tsend, -+ Tunpack)

1 1
Lsmge B fsmge (Ssrage)

Tsmge =

Modeling of Data Transfer Stages:

for each individual data transfer stage,
impose the payload size constraint, and model
the relation between the payload size and the
latency via linear equations:

__ ysetup unit
Lstage - Lsrage + Sstage X L

stage
__ Qmax
Sstage <= Sstage

Modeling of Compute Stage:

profile a set of payload sizes (power of two), and
model the latency of the compute stage into a
selection equation with a set of binary variables:

Lcompute — Zpi XLS,-a where Zpi — 1, pDi € {07 1}

Modeling of Memory Constraints:

constrain the memory usage of the pipeline in both
the CPU and the FPGA sides for separate-memory
platforms, and in only the CPU side for shared-memory
platfroms:

ZSQstage - Z(Sstage X Dstage) < Scapacity
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Experimental Results

& A set of computation
kernels as benchmarks

& Each with a Java program as
the host

& Currently single-threaded,
and will showcase the real-
application results in the

near future
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Experimental Results
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Lessons Learned and Future Work

& Single thread -> multiple threads -> Mainstream frameworks
= Modeling in the multithreaded scenario

= Integration with frameworks like Apache Hadoop and Spark

& Adapt to various platforms

= |atest platforms support FPGA’s direct access of user-space data, like IBM CAPI and
Intel Xeon+FPGA

= Amazon EC2 F1 instance brings virtualization into consideration

& JVM related improvement
= Fast and safe allocation and management of native-space memory
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Problem Formulation:
maximize the pipeline throughput, i.e.,

TK =Mi"(T,,mf. T\rnd- 7;,,,,,,,.1)

1 1
T, = e— i e—
ke Lungr Susage(Sstage)

Modeling of Data Transfer Stages:

for each individual data transfer stage,
impose the payload size constraint, and
model the relation between the payload
size and the latency via linear equations:

__ psetup unit
Lsmgr = L,uagr + ssmgr x L

‘stage
— Qmax
sslage <= S';,'a.«
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/Modeling of Compute Stage: \
profile a set of payload sizes (power of two),

and model the latency of the compute stage

into a selection equation with a set of binary

variables:

Leompure = z pi % Ls;. where z pi=1.pie{0,1}

Linear
Programming
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