<D

N Center for Domain-
[\ Specific Computing

From JVM to FPGA: Bridging Abstraction Hierarchy via
Optimized Deep Pipelining

Jason Cong, Peng Wei and Cody Hao Yu

University of California, Los Angeles

UC COMPUTER SCIENCE DEPARTMENT

Motivation:

Harnessing FPGAs in Datacenter

Harnessing FPGAs in Datacenters: Why?

& Heterogeneous architecture: an “agreement” from the hardware

| Tore fiexdbie——— Dedicated HW

More efficient...

community

-
(]

=
=
E
S~
%l
(a8
o
=
>
=]
=
2
=
y—
Y—
(¢}]
>
(=)
—
(<]
=
w

TESLA

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Processor Number (sorted by efficiency))
Source: ISSCC Proceedings

TPU GPGPU FPGA

Generalization <]\/) > Customization
3

Sources: Google, NVIDIA, Intel, Bob Broderson, Berkeley Wireless group

Harnessing FPGAs in Datacenters: Why?

& Heterogeneous architecture: an “agreement” from the hardware
community

¢ The FPGA-based cluster is a promising paradigm

= Standalone FPGA accelerators demonstrate orders-of-magnitude performance/watt

improvement P e NG
CNN J “‘ FET
Dynamic Prog T Analytics
Encryption Compression
GEMM/SPMV 4

String Matching

Harnessing FPGAs in Datacenters: Why?

& Heterogeneous a e hardware

community

¢ The FPGA-based

= Standalone FPGA ¢
improvement

tude performance/watt

= FPGAs are reconfig

°A reIatlver ‘gene

,l Wi
“iframazon
BR Microsoft Azure v webservices™

5

E%'qA@ Aicloud Q7Y

Baidu Cloud

Challenge:

system integration - from kernel speedup to system acceleration

Accelerator (FPGA)-as-a-Service

= \\‘\\!' Il

N

GPU

FPGA

(Container)

E (Container)

GAM Global Accelerator Manager: accelerator-centric scheduling

Node Accelerator Manager:

NAM local accelerator service management, JVM-to-ACC communication optimization

In terms of performance, there is much to say...

¢ Time breakdown of AES

= Pack: app.-dep.; ~4GB/s e Host ~N 4 Device ™
" Send (via socket): ~3GB/s User Memory Space FPGA Fabric
= Usr->Kernel: “6GB/s []
FPGA Accelerator
= DMA: ~5GB/s :
, (6]
= Load: ~“6GB/s (shd w/ Store) M BT Native Buf — anc‘erIip—FIops
= Compute: 12.8GB/s
® >100x over CPU Kernel Memory Jpace Device Memory
. Pinned Buf|< g »Pinned Buf
o ~/ o ~/

= 1/(1/4+1/3+...) =0.47 GB/s

= 27x performance loss!!!

JVM-FPGA Communication Pipelining

Input
Java Objects
===

(1 JVM Input Pageable Input Kernel Input Device Input
1 O 1 Buffer Queus Buffer Queuey Buffer Queue Buffer Queue
1 I
. DMA

: O Pack Send Pin

1 | Forward

1 I

1 I

N ____/

Output

Java Objects

(- C-)- - \| JVM Output Pageable Output Kernel Outpu Device Output

ueue Buffer Queus Buffer Queugq Buffer Queue

Recv Unpin

Backward

C/C++ &
Vendor APIs

Java

Load

Store

BRAM Input
Buffer Queue

Compute

BRAM Output
Buffer Queue

Verilog HDL

JVM-FPGA Communication Pipelining

¢ Send + Pin =>Send o s
@
= Limitation of vendor APIs o | _
¢ Load/Com pUtE/StO re => ,av‘:"(;{’,j“:ds Send Queue CLinput Queue Load Queue

Compute E%] —p> Send DMALoad
EO o E npack «

= Qverlapping comm. & comp. g

’ A 4
¢ Programmer’s
responsibility Compute
= Pack and unpack ‘o
i Q i ac ———

u Implementing an iterator O ® Recv Queue CLoutput Queue Store Queue

interface to supply input Coup I Recv DMAStore <

data ‘o

@ | e | g
= Header + payload LIS

10

In terms of performance, there is still much to say...

® ¢ ¢ ¢ o

The pipeline efficiency is bounded by the slowest stage

In general, latency = time_setup (one-time) + payload_size * time_unit (linear)
Adjust the payload sizes of different pipeline stages to balance their throughputs
... but how to?

Linear with constraints => linear programming

OpenCL Data Load Socket Data Send
0.015
0.025
©.020 ©.010
T 0.015 - o
E E 0.005
2 0010 g ot
2 0.005 - 3 0,000 | eomempaiiiiss -
g g
2 pooo 3
—0.005 -
—0.005
=0.010 - =0.010 -

0 10 20 30 0 1 2 3 4 11
Size (MB) Size (MB)

Linear Programming Formulation

Problem Formulation:
maximize the pipeline throughput, i.e.,

Tk :Min(Tpack7 Tsend, -+ Tunpack)

1 1
Lsmge B fsmge (Ssrage)

Tsmge =

Modeling of Data Transfer Stages:

for each individual data transfer stage,
impose the payload size constraint, and model
the relation between the payload size and the
latency via linear equations:

__ ysetup unit
Lstage - Lsrage + Sstage X L

stage
__ Qmax
Sstage <= Sstage

Modeling of Compute Stage:

profile a set of payload sizes (power of two), and
model the latency of the compute stage into a
selection equation with a set of binary variables:

Lcompute — Zpi XLS,-a where Zpi — 1, pDi € {07 1}

Modeling of Memory Constraints:

constrain the memory usage of the pipeline in both
the CPU and the FPGA sides for separate-memory
platforms, and in only the CPU side for shared-memory
platfroms:

ZSQstage - Z(Sstage X Dstage) < Scapacity

12

Experimental Results

& A set of computation
kernels as benchmarks

& Each with a Java program as
the host

& Currently single-threaded,
and will showcase the real-
application results in the

near future

= = =
N» O

=
o

Throughput (GB/s)
© o o o

o
o

KMP

— eline

[Sdq, Size=512KB |
I Sqq, Size=1MB
Il Sdq, Size=2MB

NW TENCIL ITERBI

13

Experimental Results

. 1.6 : : : : : :
¢ A set of computation — — e P Approach
kernels as benchmarks 1.4} Size=512KB |]
_ Size=1MB
¢ Each with a Java program as % 1.2 Size=2MB
the host O 1.0f
5
¢ Currently single-threaded, 208
. (@)}
and will showcase the real- 3 0.6}
application results in the E 0.4!
near future 02!
0.0
FFT VITERBI

14

Lessons Learned and Future Work

& Single thread -> multiple threads -> Mainstream frameworks
= Modeling in the multithreaded scenario

= Integration with frameworks like Apache Hadoop and Spark

& Adapt to various platforms

= |atest platforms support FPGA’s direct access of user-space data, like IBM CAPI and
Intel Xeon+FPGA

= Amazon EC2 F1 instance brings virtualization into consideration

& JVM related improvement
= Fast and safe allocation and management of native-space memory

15

THANKS FOR YOUR ATTENTION.

16

Host

User Memory Space

Kernel Memory

pace

Problem Formulation:
maximize the pipeline throughput, i.e.,

TK =Mi"(T,,mf. T\rnd- 7;,,,,,,,.1)

1 1
T, = e— i e—
ke Lungr Susage(Sstage)

Modeling of Data Transfer Stages:

for each individual data transfer stage,
impose the payload size constraint, and
model the relation between the payload
size and the latency via linear equations:

__ psetup unit
Lsmgr = L,uagr + ssmgr x L

‘stage
— Qmax
sslage <= S';,'a.«

Device)

FPGA Fabric

FPGA Accelerator

lo

BRAM and Flip-Flops |

Device Memory

Pinned Buf|e

-

J

»Pinned Buf|

/Modeling of Compute Stage: \
profile a set of payload sizes (power of two),

and model the latency of the compute stage

into a selection equation with a set of binary

variables:

Leompure = z pi % Ls;. where z pi=1.pie{0,1}

Linear
Programming

/Modeling of Memory Constraints: \
constrain the memory usage of the pipeline

in both the CPU and the FPGA sides for

separate-memory platforms, and in only the

CPU side for shared-memory platfroms:

zSQ_m,ge = Z(sxmge X D.tmgr) < Smparil,v

%

Kernel Input

Buffer Queu
" DMA
Pin }”:HHForward

Kernel Output Device Outpul

e q Buffer Queu B
Unpin DMA
Backward

C/C++ &
Vendor APIs

BRAM Input

Device Input

Verilog HDL

