
Designing	an	Efficient	Replicated	Log	Store	with	Consensus	Protocol

Jung-Sang Ahn (junahn@ebay.com), 
Woon-Hak Kang, Kun Ren, Guogen Zhang, and Sami Ben-Romdhane

Platform Architecture & Data Infrastructure, eBay Inc.

USENIX HotCloud 2019

mailto:junahn@ebay.com


Outline
• Purpose & Requirement

• Challenging Issue?

• Our Approach

• Brief Evaluation

• What’s Next?

1/12



Log	Store
• Strict ordering
• Determining global order of execution

• Useful for distributed transaction
• GRIT (ICDE 2019, our work)
• Tango (SOSP 2013), CORFU (NSDI 2012)
• Calvin (SIGMOD 2012), FaunaDB
• ...

• Should be
• Highly available: multiple replicas

• Highly efficient: lots of subscribers

1 2 3 4 5 6 7 8

Globally shared logs Writers

Shard 1 Shard 2 Shard N…

Same order of execution, 
without any coordination.

2/12



Requirements
• Each user payload à unique log sequence number (LSN)
• Non-zero positive number

• All replicas: same data + same LSN order
• Even after failure and recovery

• No empty LSN in the middle
• All LSNs should be continuous

• Clients can send payloads in batch
• Client batch (a set of LSNs) should be committed atomically

• Partial commit is not allowed

3/12



Problems
• Apache Kafka
• Can be used as a log store (G. Wang et al. VLDB 2015)

• No group commit for a single topic

• Multiple clients: one is blocked by previous replication from other client

• What if we use consensus protocol?
• Multi-Paxos (L. Lamport 2001), Raft (ATC 2014), etc.

• Raft guarantees aforementioned requirements

4/12



Log	Store	with	Raft
• Raft protocol overview

1 2 3 4

State machine

S1 (leader)

1 2 3 4

State machine

S2

1 2 3 4

State machine

S3

• Log: mutate operation
• State machine: back-end DB

Committed log

Uncommitted log

5/12



Log	Store	with	Raft
• Raft protocol overview

1 2 3 4

State machine

S1 (leader)

1 2 3 4

State machine

S2

1 2 3 4

State machine

S3

• Log: mutate operation
• State machine: back-end DB

Committed log

Uncommitted log

5

New append request

5/12



Log	Store	with	Raft
• Raft protocol overview

1 2 3 4

State machine

S1 (leader)

1 2 3 4

State machine

S2

1 2 3 4

State machine

S3

• Log: mutate operation
• State machine: back-end DB

Committed log

Uncommitted log

5

Replicate log 5,
commit log 4

5/12



Log	Store	with	Raft
• Raft protocol overview

1 2 3 4

State machine

S1 (leader)

1 2 3 4

State machine

S2

1 2 3 4

State machine

S3

• Log: mutate operation
• State machine: back-end DB

Committed log

Uncommitted log

5

5

5

5/12



Log	Store	with	Raft
• Raft protocol overview

1 2 3 4

State machine

S1 (leader)

1 2 3 4

State machine

S2

1 2 3 4

State machine

S3

• Log: mutate operation
• State machine: back-end DB

Committed log

Uncommitted log

5

5

5

Ack

5/12



Log	Store	with	Raft
• Raft protocol overview

1 2 3 4

State machine

S1 (leader)

1 2 3 4

State machine

S2

1 2 3 4

State machine

S3

• Log: mutate operation
• State machine: back-end DB

Committed log

Uncommitted log

5

5

5

Commit log 5

Execute log 5

5/12



Log	Store	with	Raft
• Raft protocol overview

1 2 3 4

State machine

S1 (leader)

1 2 3 4

State machine

S2

1 2 3 4

State machine

S3

• Log: mutate operation
• State machine: back-end DB

Committed log

Uncommitted log

5

5

5

Commit of followers is done by
• Next replication (pipelining)
• Heartbeat (if no replication meanwhile)

5/12



Log	Store	with	Raft
• Raft protocol overview

1 2 3 4

State machine

S1 (leader)

1 2 3 4

State machine

S2

1 2 3 4

State machine

S3

• Log: mutate operation
• State machine: back-end DB

Committed log

Uncommitted log

5

5

5

Commit of followers is done by
• Next replication (pipelining)
• Heartbeat (if no replication meanwhile)

New append request

6

5/12



Log	Store	with	Raft
• Raft protocol overview

1 2 3 4

State machine

S1 (leader)

1 2 3 4

State machine

S2

1 2 3 4

State machine

S3

• Log: mutate operation
• State machine: back-end DB

Committed log

Uncommitted log

5

5

5

Commit of followers is done by
• Next replication (pipelining)
• Heartbeat (if no replication meanwhile)

6

Replicate log 6,
commit log 5

5/12



Log	Store	with	Raft
• Raft protocol overview

1 2 3 4

State machine

S1 (leader)

1 2 3 4

State machine

S2

1 2 3 4

State machine

S3

• Log: mutate operation
• State machine: back-end DB

Committed log

Uncommitted log

5

Commit of followers is done by
• Next replication (pipelining)
• Heartbeat (if no replication meanwhile)

6

5 6

5 6

Execute

Execute

5/12



Log	Store	with	Raft
• Option 1: log store based on Raft
• State machine: another append-only logs

1 2 3 4

S1 (leader)

1 2 3 4

6/12



Log	Store	with	Raft
• Option 1: log store based on Raft
• State machine: another append-only logs

1 2 3 4

S1 (leader)

1 2 3 4

5

New append request

6/12



Log	Store	with	Raft
• Option 1: log store based on Raft
• State machine: another append-only logs

1 2 3 4

S1 (leader)

1 2 3 4

5

Replicate & consensus

6/12



Log	Store	with	Raft
• Option 1: log store based on Raft
• State machine: another append-only logs

1 2 3 4

S1 (leader)

1 2 3 4

Commit & execute5

5

6/12



Log	Store	with	Raft
• Option 1: log store based on Raft
• State machine: another append-only logs

1 2 3 4

S1 (leader)

1 2 3 4

Exactly duplicate logs!
• Double the space
• Double disk writes

5

5

6/12



Log	Store	with	Raft
• Option 1: log store based on Raft
• State machine: another append-only logs

• Option 2: directly using Raft logs as actual logs
• LSN == Raft log number

• Granularity difference
• Cannot guarantee atomic commit of a batch
• Basic unit of replication, consensus, recovery, and commit: a Raft log

1 2 3

Empty

4 5User wants to commit
4 and 5 atomically

Raft: replicate 4 only
à out of control

6/12



Log	Store	with	Raft
• Option 1: log store based on Raft
• State machine: another append-only logs

• Option 2: directly using Raft logs as actual logs
• LSN == Raft log number

• Granularity difference
• Cannot guarantee atomic commit of a batch
• Basic unit of replication, consensus, recovery, and commit: a Raft log

• System logs in the middle
• Not continuous LSN

1 2 3

Empty

System log by 
membership or configuration change

4 5 6 7

6/12



Our	Approach:
Log	Sharing	Scheme



Log	Sharing	Scheme
• Data log store (state machine)
• Stores user payloads

• Assigns LSN to each payload

• Raft log store
• Stores Raft logs

• References to data log store

• Each payload is written to disk only once

• Granularity difference
• Raft log: multiple references to data log 1 2 3 4

Data log store
(state machine)

1

1

2

2 3
4

Raft log store

7/12



Log	Sharing	Scheme
• Data log store (state machine)
• Stores user payloads

• Assigns LSN to each payload

• Raft log store
• Stores Raft logs

• References to data log store

• Each payload is written to disk only once

• Granularity difference
• Raft log: multiple references to data log

foo bar

User payloads

1 2 3 4

Data log store
(state machine)

1

1

2

2 3
4

Raft log store

7/12



Log	Sharing	Scheme
• Data log store (state machine)
• Stores user payloads

• Assigns LSN to each payload

• Raft log store
• Stores Raft logs

• References to data log store

• Each payload is written to disk only once

• Granularity difference
• Raft log: multiple references to data log

foo bar

User payloads

1 2 3 4

Data log store
(state machine)

1

1

2

2 3
4

Raft log store

5 6

Write to state machine
without commit:
assign LSN 5 and 6 7/12



Log	Sharing	Scheme
• Data log store (state machine)
• Stores user payloads

• Assigns LSN to each payload

• Raft log store
• Stores Raft logs

• References to data log store

• Each payload is written to disk only once

• Granularity difference
• Raft log: multiple references to data log

foo bar

User payloads

1 2 3 4

Data log store
(state machine)

1

1

2

2 3
4

Raft log store

5 6

Write to state machine
without commit:
assign LSN 5 and 6

3

5 6

Append a Raft log
containing references

7/12



Log	Sharing	Scheme
• Data log store (state machine)
• Stores user payloads

• Assigns LSN to each payload

• Raft log store
• Stores Raft logs

• References to data log store

• Each payload is written to disk only once

• Granularity difference
• Raft log: multiple references to data log

foo bar

User payloads

1 2 3 4

Data log store
(state machine)

1

1

2

2 3
4

Raft log store

5 6

Last committed log

3

5 6

7/12



Log	Sharing	Scheme
• Data log store (state machine)
• Stores user payloads

• Assigns LSN to each payload

• Raft log store
• Stores Raft logs

• References to data log store

• Each payload is written to disk only once

• Granularity difference
• Raft log: multiple references to data log

foo bar

User payloads

1 2 3 4

Data log store
(state machine)

1

1

2

2 3
4

Raft log store

5 6

Last committed log

3

5 6

foo bar

Reconstruct
original payloads

Replicate
Raft log 3

7/12



Log	Sharing	Scheme
• Data log store (state machine)
• Stores user payloads

• Assigns LSN to each payload

• Raft log store
• Stores Raft logs

• References to data log store

• Each payload is written to disk only once

• Granularity difference
• Raft log: multiple references to data log

foo bar

User payloads

1 2 3 4

Data log store
(state machine)

1

1

2

2 3
4

Raft log store

5 6

Last committed log

3

5 6

Commit
Raft log 3

7/12



Log	Sharing	Scheme
• Data log store (state machine)
• Stores user payloads

• Assigns LSN to each payload

• Raft log store
• Stores Raft logs

• References to data log store

• Each payload is written to disk only once

• Granularity difference
• Raft log: multiple references to data log

foo bar

User payloads

1 2 3 4

Data log store
(state machine)

1

1

2

2 3
4

Raft log store

5 6

Last committed log

3

5 6

Commit
Raft log 3

Execution

7/12



Log	Sharing	Scheme
• Data log store (state machine)
• Stores user payloads

• Assigns LSN to each payload

• Raft log store
• Stores Raft logs

• References to data log store

• Each payload is written to disk only once

• Granularity difference
• Raft log: multiple references to data log

foo bar

User payloads

1 2 3 4

Data log store
(state machine)

1

1

2

2 3
4

Raft log store

5 6

Last committed log

3

5 6

Commit
Raft log 3

Execution

Commit process should be atomic
7/12



Log	Sharing	Scheme
• Payloads are written to state machine before commit
• Inconsistency?

1

1

1

1

1

1

1

1

1S1 (leader)

S2 S3
8/12



Log	Sharing	Scheme
• Payloads are written to state machine before commit
• Inconsistency?

1

1

1

1

1

1

1

1

1S1 (leader)

S2 S3

2 3

2

2 3

4

4

Append 3 payloads:
Raft log 2 with LSN 2, 3, and 4

8/12



Log	Sharing	Scheme
• Payloads are written to state machine before commit
• Inconsistency?

1

1

1

1

1

1

1

1

1S1 (leader)

S2 S3

2 3

2

2 3

4

4

Replication of Raft log 2 fails, 
leader crashes

8/12



Log	Sharing	Scheme
• Payloads are written to state machine before commit
• Inconsistency?

1

1

1

1

1

1

1

1

1S1

S2 (leader) S3

2 3

2

2 3

4

4

S2 is elected as a new leader
8/12



Log	Sharing	Scheme
• Payloads are written to state machine before commit
• Inconsistency?

1

1

1

1

1

1

1

1

1S1

S2 (leader) S3

2 3

2

2 3

4

4

Append 2 payloads,
assign LSN 2 and 3,
and commit Raft log 2

2

2 3

2 3

2

2 3

2 3
8/12



Log	Sharing	Scheme
• Payloads are written to state machine before commit
• Inconsistency?

1

1

1

1

1

1

1

1

1S1

S2 (leader) S3

2 3

2

2 3

4

4

Previous leader is back

2

2 3

2 3

2

2 3

2 3
8/12



Log	Sharing	Scheme
• Payloads are written to state machine before commit
• Inconsistency?

1

1

1

1

1

1

1

1

1S1

S2 (leader) S3

2 3

2

2 3

4

4

Replicate Raft log 2
with 2 new payloads

2

2 3

2 3

2

2 3

2 3
8/12



Log	Sharing	Scheme
• Payloads are written to state machine before commit
• Inconsistency?

1

1

1

1

1

1

1

1

1S1

S2 (leader) S3

2 3

2

5 6

4

Assign 5 and 6,
and overwrite Raft log 2
à inconsistency

2

2 3

2 3

2

2 3

2 3

5 6

8/12



Log	Sharing	Scheme
• Payloads are written to state machine before commit
• Inconsistency?

1

1

1

1

1

1

1

1

1S1

S2 (leader) S3

2 3

2

2 3

4

4

Special hook: detect Raft log overwrite
à rollback state machine

2

2 3

2 3

2

2 3

2 3
8/12



Log	Sharing	Scheme
• Payloads are written to state machine before commit
• Inconsistency?

1

1

1

1

1

1

1

1

1S1

S2 (leader) S3

2

2 3
4

Special hook: detect Raft log overwrite
à rollback state machine

2

2 3

2 3

2

2 3

2 3
8/12



Log	Sharing	Scheme

1

1

1

1

1

1

1

1

1S1

S2 (leader) S3

2 3

2

2 3

Assign 2 and 3,
overwrite Raft log 2

2

2 3

2 3

2

2 3

2 3

• Payloads are written to state machine before commit
• Inconsistency?

8/12



Log	Sharing	Scheme

1

1

1

1

1

1

1

1

1S1

S2 (leader) S3

2 3

2

2 3

Assign 2 and 3,
overwrite Raft log 2

2

2 3

2 3

2

2 3

2 3

• Payloads are written to state machine before commit
• Inconsistency?

• Rollback is easily doable
• Log store’s state machine: log-structured format

• What if state machine is general database or key-value store?
• Un-do logs for rollback? à cancel the benefit of log sharing

• Not easy

8/12



Group	Commit	&	Pipelining
• To maximize throughput

• Accept new payloads while previous replication is in flight

• Commit multiple user batches at once

1Req. from client 2

S1 (leader)

Time

9/12



Group	Commit	&	Pipelining
• To maximize throughput

• Accept new payloads while previous replication is in flight

• Commit multiple user batches at once

1Req. from client 2

S1 (leader)

Send 1-2 to S2

Time

9/12



Group	Commit	&	Pipelining
• To maximize throughput

• Accept new payloads while previous replication is in flight

• Commit multiple user batches at once

1Req. from client 2

S1 (leader)

3

Send 1-3 to S3

Send 1-2 to S2

Time

9/12



Group	Commit	&	Pipelining
• To maximize throughput

• Accept new payloads while previous replication is in flight

• Commit multiple user batches at once

1Req. from client 2

S1 (leader)

3

Send 1-3 to S3

Send 1-2 to S2

4

Ack

5 6 7 8

Time

9/12



Group	Commit	&	Pipelining
• To maximize throughput

• Accept new payloads while previous replication is in flight

• Commit multiple user batches at once

1Req. from client 2

S1 (leader)

3

Send 1-3 to S3

Send 1-2 to S2

4

Ack

5 6 7 8

1 2Resp. to client

Now majority of servers (S1 and S2) have logs up to 2

Time

9/12



Group	Commit	&	Pipelining
• To maximize throughput

• Accept new payloads while previous replication is in flight

• Commit multiple user batches at once

1Req. from client 2

S1 (leader)

3

Send 1-3 to S3

Send 1-2 to S2

4

Ack

5 6 7 8

1 2Resp. to client

Now majority of servers (S1 and S2) have logs up to 2

Send 3-8 to S2

Time

9/12



Group	Commit	&	Pipelining
• To maximize throughput

• Accept new payloads while previous replication is in flight

• Commit multiple user batches at once

1Req. from client 2

S1 (leader)

3

Send 1-3 to S3

Send 1-2 to S2

4

Ack

5 6 7 8

1 2Resp. to client

Send 3-8 to S2

9 10

Ack

Time

9/12



Group	Commit	&	Pipelining
• To maximize throughput

• Accept new payloads while previous replication is in flight

• Commit multiple user batches at once

1Req. from client 2

S1 (leader)

3

Send 1-3 to S3

Send 1-2 to S2

4

Ack

5 6 7 8

1 2Resp. to client

Send 3-8 to S2

9 10

Ack

3

Now majority of servers (S1 and S3) have logs up to 3

Time

9/12



Group	Commit	&	Pipelining
• To maximize throughput

• Accept new payloads while previous replication is in flight

• Commit multiple user batches at once

1Req. from client 2

S1 (leader)

3

Send 1-3 to S3

Send 1-2 to S2

4

Ack

5 6 7 8

1 2Resp. to client

9 10

Ack

3

Now majority of servers (S1 and S3) have logs up to 3

Send 4-10 to S3

Send 3-8 to S2

Time

9/12



Group	Commit	&	Pipelining
• To maximize throughput

• Accept new payloads while previous replication is in flight

• Commit multiple user batches at once

1Req. from client 2

S1 (leader)

3

Send 1-3 to S3

Send 1-2 to S2

4

Ack

5 6 7 8

1 2Resp. to client

9 10

Ack

3

Send 4-10 to S3

Send 3-8 to S2

11 12 13 14

Time

9/12



Group	Commit	&	Pipelining
• To maximize throughput

• Accept new payloads while previous replication is in flight

• Commit multiple user batches at once

1Req. from client 2

S1 (leader)

3

Send 1-3 to S3

Send 1-2 to S2

4

Ack

5 6 7 8

1 2Resp. to client

9 10

Ack

3

Send 4-10 to S3

Send 3-8 to S2

11 12 13 14

Send 3-14 to S2

Time

9/12



Group	Commit	&	Pipelining
• To maximize throughput

• Accept new payloads while previous replication is in flight

• Commit multiple user batches at once

1Req. from client 2

S1 (leader)

3

Send 1-3 to S3

Send 1-2 to S2

4

Ack

5 6 7 8

1 2Resp. to client

9 10

Ack

3

Send 4-10 to S3

Send 3-8 to S2

11 12 13 14

Send 3-14 to S2

Ack

15 16

4 5 6 7 8 9 10

Now majority of servers (S1 and S3) have logs up to 10

Time

9/12



Group	Commit	&	Pipelining
• To maximize throughput

• Accept new payloads while previous replication is in flight

• Commit multiple user batches at once

1Req. from client 2

S1 (leader)

3

Send 1-3 to S3

Send 1-2 to S2

4

Ack

5 6 7 8

1 2Resp. to client

9 10

Ack

3

Send 4-10 to S3

Send 3-8 to S2

11 12 13 14

Ack

15 16

4 5 6 7 8 9 10

Now majority of servers (S1 and S3) have logs up to 10

Send 11-16 to S3

Send 3-14 to S2

…

Time

9/12



Group	Commit	&	Pipelining
• To maximize throughput

• Accept new payloads while previous replication is in flight

• Commit multiple user batches at once

1Req. from client 2

S1 (leader)

3

Send 1-3 to S3

Send 1-2 to S2

4

Ack

5 6 7 8

1 2Resp. to client

9 10

Ack

3

Send 4-10 to S3

Send 3-8 to S2

11 12 13 14

Ack

15 16

4 5 6 7 8 9 10

Now majority of servers (S1 and S3) have logs up to 10

Send 11-16 to S3

Send 3-14 to S2

…

Time

9/12

• Replication to each server: batched & pipelined independently

• Do not wait for commit of previous replication

• No empty LSN: only dealing with the last successful LSN



Implementation
• Written in C++
• Raft: 5,578 lines of code

• Core logic: 20,196 lines of code

• gRPC service: 7,494 lines of code

• Deployed as a service

gRPC Service

Raft Core

Local Log Store

Disk

HT
TP

 S
er

ve
r

Same process

Data path (gRPC)

Control path
(RESTful API)

10/12



Brief	Evaluation
• 3 replicas in the same DC

• Not powerful: 2.5 cores each

• Client: different node in the same DC
• Send traffic using gRPC stream

• Max network throughput (per stream): 85-90 MB/s

0

20

40

60

80

1K 2K 4K 8K 16K 32K 64K 128K

Th
ro

ug
hp

ut
 (M

B/
s)

Input traffic (payloads/sec)

Throughput According to Traffic

256

512

1KB

2KB

4KB

0

0.2

0.4

0.6

512 1KB 2KB 4KB
Payload size (byte)

Write & Space Amplification

Write amplification Space amplification

0

10

20

30

40

50

1 10 100 1000

Th
ro

ug
hp

ut
 (M

B/
s)

Batch size

Throughput According to Batch Size

256

512

1KB

2KB

4KB Kafka with 2KB
11/12

67 MB/s



Summary
• State machine-based replication for log store
• End up with duplicate log issue

• Log sharing scheme
• Using characteristics of log-structured state machine

• Group commit + pipelining on top of it

• What’s next?
• Distributed (sharded) log store

• Scaling out over multiple shards (partitions, share nothing)
• How can we guarantee global ordering?

• Generalization: based on other consensus protocol, not Raft?
• What if we allow empty LSN in the middle?

• Extending log sharing scheme for general databases
• Rollback of indexes without un-do logs? 12/12



Thank	You


