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Log	Store
• Strict ordering
• Determining global order of execution

• Useful for distributed transaction
• GRIT (ICDE 2019, our work)
• Tango (SOSP 2013), CORFU (NSDI 2012)
• Calvin (SIGMOD 2012), FaunaDB
• ...

• Should be
• Highly available: multiple replicas

• Highly efficient: lots of subscribers

1 2 3 4 5 6 7 8

Globally shared logs Writers

Shard 1 Shard 2 Shard N…

Same order of execution, 
without any coordination.
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Requirements
• Each user payload à unique log sequence number (LSN)
• Non-zero positive number

• All replicas: same data + same LSN order
• Even after failure and recovery

• No empty LSN in the middle
• All LSNs should be continuous

• Clients can send payloads in batch
• Client batch (a set of LSNs) should be committed atomically

• Partial commit is not allowed
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Problems
• Apache Kafka
• Can be used as a log store (G. Wang et al. VLDB 2015)

• No group commit for a single topic

• Multiple clients: one is blocked by previous replication from other client

• What if we use consensus protocol?
• Multi-Paxos (L. Lamport 2001), Raft (ATC 2014), etc.

• Raft guarantees aforementioned requirements
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Log	Store	with	Raft
• Raft protocol overview
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• Log: mutate operation
• State machine: back-end DB

Committed log

Uncommitted log
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Log	Store	with	Raft
• Option 1: log store based on Raft
• State machine: another append-only logs
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Log	Store	with	Raft
• Option 1: log store based on Raft
• State machine: another append-only logs

1 2 3 4

S1 (leader)

1 2 3 4

Exactly duplicate logs!
• Double the space
• Double disk writes

5

5
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Log	Store	with	Raft
• Option 1: log store based on Raft
• State machine: another append-only logs

• Option 2: directly using Raft logs as actual logs
• LSN == Raft log number

• Granularity difference
• Cannot guarantee atomic commit of a batch
• Basic unit of replication, consensus, recovery, and commit: a Raft log

1 2 3

Empty

4 5User wants to commit
4 and 5 atomically

Raft: replicate 4 only
à out of control
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Log	Store	with	Raft
• Option 1: log store based on Raft
• State machine: another append-only logs

• Option 2: directly using Raft logs as actual logs
• LSN == Raft log number

• Granularity difference
• Cannot guarantee atomic commit of a batch
• Basic unit of replication, consensus, recovery, and commit: a Raft log

• System logs in the middle
• Not continuous LSN

1 2 3

Empty

System log by 
membership or configuration change

4 5 6 7

6/12



Our	Approach:
Log	Sharing	Scheme



Log	Sharing	Scheme
• Data log store (state machine)
• Stores user payloads

• Assigns LSN to each payload

• Raft log store
• Stores Raft logs

• References to data log store

• Each payload is written to disk only once

• Granularity difference
• Raft log: multiple references to data log 1 2 3 4

Data log store
(state machine)

1

1

2

2 3
4

Raft log store
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Log	Sharing	Scheme
• Payloads are written to state machine before commit
• Inconsistency?

1

1

1

1

1

1

1

1

1S1 (leader)

S2 S3
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1

1

1

1

1

1

1

1
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S2 S3

2 3

2

2 3

4

4
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Log	Sharing	Scheme
• Payloads are written to state machine before commit
• Inconsistency?

1

1

1

1

1

1

1

1

1S1 (leader)

S2 S3

2 3

2

2 3

4

4

Replication of Raft log 2 fails, 
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1

1

1

1

1
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2 3

2

2 3

4

4

S2 is elected as a new leader
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Log	Sharing	Scheme
• Payloads are written to state machine before commit
• Inconsistency?

1
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1
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2 3

2
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4

4

Append 2 payloads,
assign LSN 2 and 3,
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2
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Log	Sharing	Scheme
• Payloads are written to state machine before commit
• Inconsistency?

1
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1

1

1

1

1

1
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2 3

2

2 3

4

4

Previous leader is back

2
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2
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Log	Sharing	Scheme
• Payloads are written to state machine before commit
• Inconsistency?

1

1

1

1

1

1

1

1

1S1

S2 (leader) S3

2 3

2

2 3

4

4

Replicate Raft log 2
with 2 new payloads

2

2 3

2 3

2

2 3
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Log	Sharing	Scheme
• Payloads are written to state machine before commit
• Inconsistency?
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1
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2 3

2

5 6

4

Assign 5 and 6,
and overwrite Raft log 2
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Log	Sharing	Scheme

1

1

1

1

1

1

1

1

1S1

S2 (leader) S3
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2
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Assign 2 and 3,
overwrite Raft log 2
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• Payloads are written to state machine before commit
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Log	Sharing	Scheme

1

1
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Assign 2 and 3,
overwrite Raft log 2

2

2 3

2 3

2
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• Payloads are written to state machine before commit
• Inconsistency?

• Rollback is easily doable
• Log store’s state machine: log-structured format

• What if state machine is general database or key-value store?
• Un-do logs for rollback? à cancel the benefit of log sharing

• Not easy
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Group	Commit	&	Pipelining
• To maximize throughput

• Accept new payloads while previous replication is in flight

• Commit multiple user batches at once

1Req. from client 2

S1 (leader)

Time
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• Replication to each server: batched & pipelined independently

• Do not wait for commit of previous replication

• No empty LSN: only dealing with the last successful LSN



Implementation
• Written in C++
• Raft: 5,578 lines of code

• Core logic: 20,196 lines of code

• gRPC service: 7,494 lines of code

• Deployed as a service

gRPC Service

Raft Core

Local Log Store

Disk

HT
TP

 S
er

ve
r

Same process

Data path (gRPC)

Control path
(RESTful API)
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Brief	Evaluation
• 3 replicas in the same DC

• Not powerful: 2.5 cores each

• Client: different node in the same DC
• Send traffic using gRPC stream

• Max network throughput (per stream): 85-90 MB/s
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Summary
• State machine-based replication for log store
• End up with duplicate log issue

• Log sharing scheme
• Using characteristics of log-structured state machine

• Group commit + pipelining on top of it

• What’s next?
• Distributed (sharded) log store

• Scaling out over multiple shards (partitions, share nothing)
• How can we guarantee global ordering?

• Generalization: based on other consensus protocol, not Raft?
• What if we allow empty LSN in the middle?

• Extending log sharing scheme for general databases
• Rollback of indexes without un-do logs? 12/12



Thank	You


