Saman Biookaghazadeh, Ming Zhao, Fengbo Ren *Arizona State University* 

# Are FPGAs Suitable For Edge Computing?

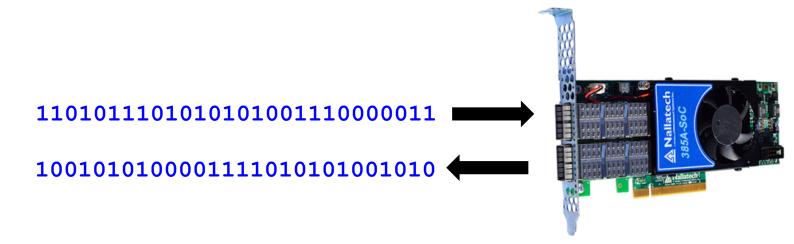




#### **Outline**

- Introduction
- Background
- Methodology
- Experimental Results

#### Introduction


- Future of Internet-of-Things (IoT) by 2020
  - IoT will connect 50 billion devices
  - It is expected to generate 400 Zetta Bytes of data annually
- Cloud infrastructure is falling short!
  - Cannot handle such large and distributed amount of data
  - Mainly designed for time-insensitive applications, endusers, processing batches of data
- Solution?
  - A new paradigm called edge computing
  - Serve time-sensitive IoT applications, and support various streaming I/O channels

#### **Limitations of Existing Solutions**

- How about existing cloud and edge servers?
  - Simply a miniature version of cloud servers
  - Architectured for using CPUs and GPUs
    - For **batches of data**, **power hungry**, and unpredictable performance
- What do we need?
  - New hardware for the new paradigm

## **Background of FPGA**

- Reconfigurable Farm of logic
- Opportunity to program using C, C++ and <u>OpenCL</u>
- Inherently efficient for streaming applications
- Suitable for a wide range of applications
  - **Spatial** parallelism, parallelism in *space*
  - Temporal parallelism, parallelism in time
- Power Efficient
  - Improve thermal stability and reduce cooling cost



#### **Motivations for FPGA-based Edge Computing**

- Edge computing's most important requirements
  - Predictable performance for IoT service providers
  - Operational in locations with limited power supply
  - Accelerate a wide variety of service applications
- We study suitability of FPGAs with respect to:
  - Sensitivity of processing throughput to the workload size
  - Adaptiveness to algorithm concurrency and dependency
  - Energy efficiency

#### **Testbench**

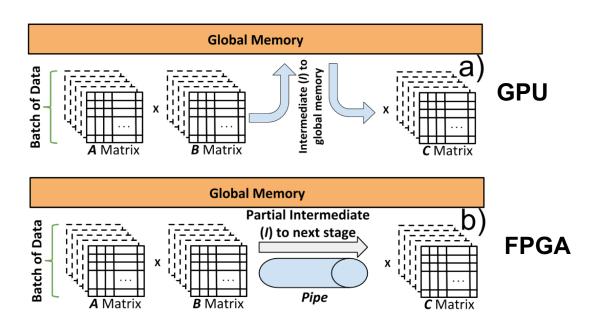


Nallatech 385A (Intel Arria A10)

Intel Xeon E5-1275

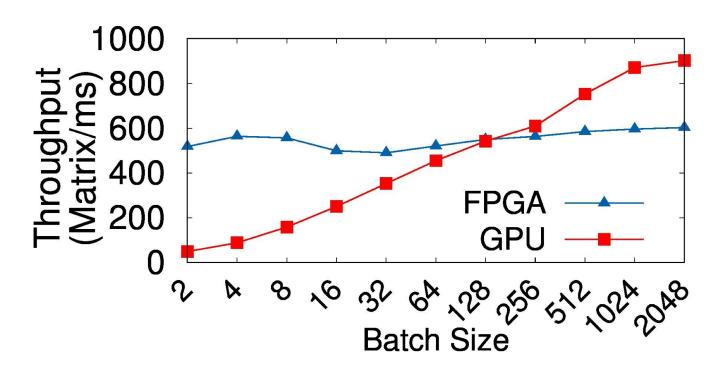
32GB Main Memory




Tesla K40m

Intel Xeon E5-2637

64GB Main Memory

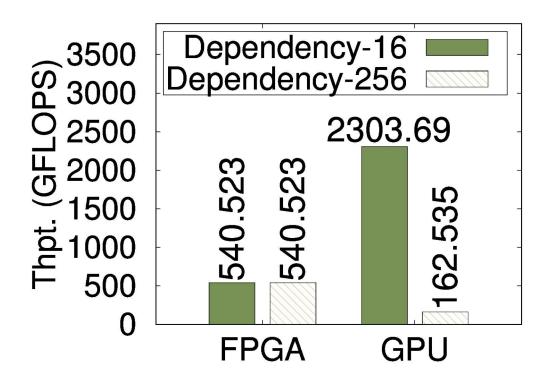

#### **Sensitivity to Workload Size**

- Two stage matrix multiplication (A x B x C) as a benchmark
  Widely used in linear algebraic algorithms
- 32 x 32 matrices, with single-precision floating-point random numbers
- Varying batch size between 2 to 2048



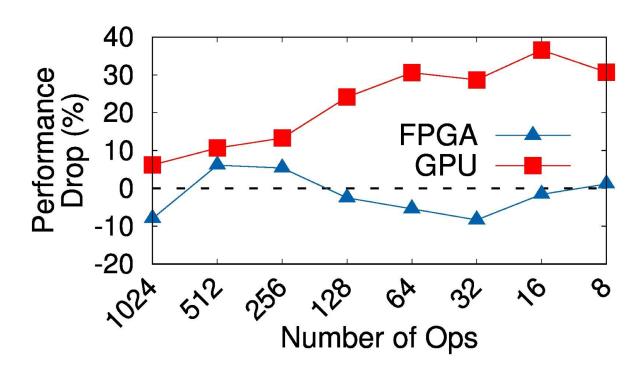
#### **Sensitivity to Workload Size**

- FPGA reads input from the Ethernet I/O
- GPU reads input from the card main memory
- Unlike GPU, FPGA can provide consistent throughput
  - By jointly exploiting spatial and temporal parallelism



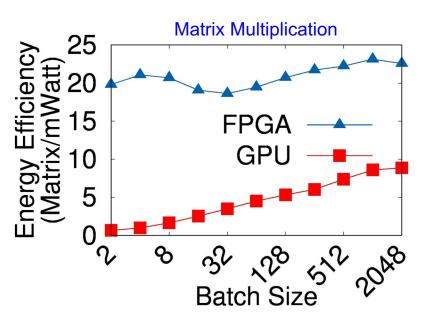

#### **Adaptiveness**

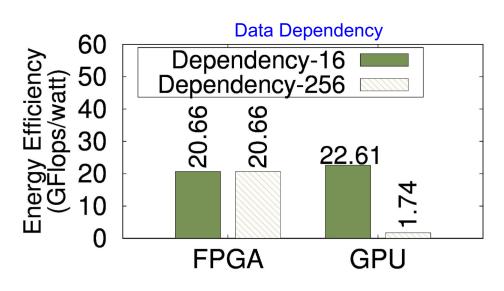
- How well FPGAs and GPUs adapt to algorithm characteristics?
- Data Dependency: Dependency across different iterations of a loop
- Conditional Dependency: Dependency on conditional statements with each iteration of the loop
- Benchmark
  - Simple iterative block (for-loop)
  - Each iteration performs certain number of operations
  - Generic enough to model large set of computationally intensive applications


#### **Data Dependency**

- Introducing dependency among different iterations
- Varying the data dependency degree
  - Changing the size of the group
- GPUs performance closely depends on available data parallelism
- FPGAs can exploit pipelining and execute iterations, regardless of dependency




## **Conditional Dependency**


- Adding if-else statements into the loop
- Each branch contains half of the operations
- Varying number of operations in each if and else block
- Different devices show different behaviours:
  - GPU is highly sensitive to conditional statement
  - FPGA can utilize a look-up table



# **Energy Efficiency**

- Collecting energy consumption on both devices
  - Nvidia-smi on the GPU
  - Nallatech MMD Layer API on FPGA.
- Varying workload input size





#### **Conclusions and Future Works**

- FPGAs can handle unique edge requirements
- FPGA can be considered as a core computational accelerator in the emerging edge systems
- FPGAs can provide predictive throughput, Algorithm adaptiveness, and energy-efficiency
- Future Directions?
  - Studying edge workloads
  - Studying other algorithms characteristics and suitability of different hardware architectures
  - Scalability (Up & Out) of FPGAs compared to GPUs

# Acknowledgement

- Sponsors
  - National Science Foundation (CNS-1629888)
  - Intel FPGA university program
- VISA LAB: http://visa.lab.asu.edu



# Question?