
Home, SafeHome: Ensuring a
Safe and Reliable Home Using

the Edge
Shegufta Ahsan*, Rui Yang*, Shadi Noghabi**,

Indranil (Indy) Gupta*

Usenix HotEdge 2019

http://dprg.cs.uiuc.edu/ :: http://indy.cs.illinois.edu

(* Univ. of Illinois Urbana-Champaign, ** Microsoft Research)

1

http://dprg.cs.uiuc.edu/
http://indy.cs.illinois.edu/

1. How many of you have IoT devices in your (smart) home?

2. How many of you use the same app (on your mobile device) to
control MORE than 1 of the IoT devices in your smart home?

3. How many of you use the same app to control ALL the IoT devices
in your smart home?

2

Smart Homes
• “All media are extensions of some human faculty -- psychic or physical.”

-- Marshall McLuhan.

• Not true in smart homes/buildings today!

1. Users today control smart homes and buildings in a largely manual style.
• Users directly control devices, e.g., via mobile
• Imperative programming (e.g., Routine = Sequence of Commands) comes with

correctness issues

2. Additionally, Humans today manually ensure that safety properties are
not violated.
• Stove is ON => Exhaust fan is ON

• House LOCKED => Security cameras ON

• ATMOST (1)(South Lawn Sprinklers, North Lawn Sprinklers)

3

The State Today

• Routines (sequences of commands) that are concurrent can conflict
with each other, creating inconsistent outcomes and unsafe states
• Humans cannot reason about concurrency at millisecond-level

• Erroneous routines may violate Safety Properties
• Switch OFF Exhaust Fan; Switch ON Stove;

• Failures of devices have unintended consequences and result in
inconsistent outcomes and unsafe states

4

Two Concurrent Routines

5

Routines R1 and R2 run on (X-axis) TP-Link HS105 smart plugs.
R1 turns on all lights, then R2 turns off all lights.
Times above (ms) show time gap from R1 start to R2 start.

SafeHome’s goal:
Bring all lines down to horizontal axisR2 starts soon after R1

→More final states are inconsistent
Worse with longer routines

SafeHome

• A software-defined management approach for smart home management.

• Features:

1. Users specify home-wide Safety properties in a declarative way – SafeHome
ensures these all the time (disallows or aborts routines that violate)

2. Users can imperatively program routines

3. SafeHome Autonomously catches and responds to concurrency conflicts,
safety violations, and failures.

4. Modular design

5. Sits on edge, and works with commodity devices and APIs (no modifications of
device)

6. Avoids putting logic on cloud, which would have increased latency and
violated privacy

6

ASID Challenges

• A: SafeHome-Atomicity. Execution of a routine is atomic and exactly-once.
• When a routine finishes, either: a) all its commands have been executed successfully, or b)

none of its commands have had an effect on the smart home.
• Challenges: a) catching conflicts, b) aborting routines, c) undo-ing routines.

• S: SafeHome-Safety. User-specific Safety properties are satisfied at runtime.
• Challenges: a) Safety properties span multiple devices, b) catching these at run-time.

• I: SafeHome-Isolation. Concurrent routines are isolated from interfering with
each other at devices.
• Challenges: If routines interfere, SafeHome must ensure the execution is serially equivalent.

• D: SafeHome-Durability. A routine that completes successfully cannot be
undone (except by another subsequent routine).
• Challenges: No undo after commit point of routine.

8

Safety Properties: SafeHome’s Grammar

This is a first-cut grammar. Surprisingly, captures a wide swathe of safety specifications.

Undesirable State Desirable Safety Property

Routine R1 turns on both stove and exhaust-fan, but
then Routine R2 turns off exhaust-fan.

IF (stove==ON) THEN (exhaust-fan==ON)

Routine R1 opens a window, Routine R2 turns on air-
conditioner.

IF (air-cond==ON) THEN
(windows==CLOSED)

Power overload due to multiple heavy devices. IF (dishwasher==on) THEN ATMOST(1)
(washingmachine==ON, dryer==ON)

Turning on all sprinklers around the house leads to
insufficient water pressure.

ATMOST(1)
(Northeast-sprinkler=ON,

Northwest-sprinkler=ON,

Southeast-sprinkler=ON)

User accidentally leaves garage-door open overnight. IF (garage-door.OPEN > `n' hours)

THEN (garage-door==CLOSE)

Safety Specifications: Examples

Failures and Safety

• Safety properties are impossible to guarantee always
• Stove and Exhaust fan are both ON → Exhaust fan fails

• SafeHome ensures safety properties are invalid for at most a
tolerance window (after a failure)
• Could be set by user or physical constraints (e.g., reboot time)

• SafeHome uses tolerance window to set timeout in its failure detector
algorithm

11

Where it Really Gets Interesting (1/2)
I. ASID@IoT Mechanisms can borrow heavily from ACID@Database
mechanisms. But key differences:

• ASID@IoT optimizes latency and abort rate, while ACID@DB optimizes
throughput and abort rate.

• Intermediate states in ASID@IoT are almost always visible to user (may not
be in ACID)
• Undo of routine needs to have consolidated action across affected devices

• Long-running routines exist in ASID@IoT (rarer in ACID)
• Run North Sprinklers for 15 minutes; Run South Sprinklers

for 20 minutes;

• Challenges: a) Interaction between long-running and short-running (instant) routines; b)
Interaction among long-running routines.

• Human Interrupts, Exceptions, Pauses

• Concurrency Control: Optimistic vs. Pessmistic Approaches 12

Where it Really Gets Interesting (2/2)
II. Safety Checking can borrow from Static and Dynamic Type Checking
in Compilers/Programming Languages. But:

• Dynamic checking need to deal with a) concurrent routines, b) failed devices
that may or may not recover (optimistic abort vs. pessimistic abort)

III. Interesting dilemmas
• Goto Dilemma: Should the default state (after-failure reboot) for garage door

be OPEN or CLOSED?
• OPEN = Hello, Burglars!

• CLOSED = Door closes on a car underneath it.

• Also occur in self-driving cars (Tesla Model S fatality May 2016, Ohio)

13

Feedback/Controversial/Open Qs/Fall Apart
• Latency

• Biggest need, and main reason for system to fall apart: “it’s too slow!”
• DB ACID consistency literature: useful? How deep? (our focus: Latency)

• User involvement
• UI: Need an easy UI for specifying safety properties, and for programming routines.
• Is ASID behavior (esp. abort and undo) cumbersome to user?
• Cannot (always) require human intervention. E.g., deadlocks, safety violations.

• Device Resources: SafeHome assumes no extra capability or memory on
devices. With more capable devices:
• More capable devices can be used for failure recovery when edge is down,

eliminating cloud reliance.
• Such smart devices can serve as failover for edge device (run SafeHome logic).

• ACID: Downsides?

14

SafeHome

• A software-defined management approach for smart home management.

• Features:

1. Users specify home-wide Safety properties in a declarative way – SafeHome
ensures these all the time (disallows or aborts routines that violate)

2. Users can imperatively program routines

3. SafeHome Autonomously catches and responds to concurrency conflicts,
safety violations, and failures.

4. Modular design

5. Sits on edge, and works with commodity devices and APIs (no modifications of
device)

6. Avoids putting logic on cloud, which would have increased latency and
violated privacy

15

Backup Slides

16

SafeHome Architecture

Term Definition

device a smart home device with a set of potential states

command a user/program triggered instruction that changes the state
of an individual device

routine a sequence of commands

Safety properties guaranteed device behaviors that user expects from the
smart home

Definitions

A. Future of Health

B. Future of Relationships

C. Future of Employment
(job finding, task matching, team making)

J. Future of Programming

D. Future of Transportation

I. Future of Data Analytics

K. Future of Research

F. Future of Agriculture

Future of PeoplePeople: Needs & Wants

6. Ethics

1. FAT:
Fairness, Accountability, Transparency, Bias,
Individual/group

2. I.E.:
Interpretability, Explainability

3. Democratization: Equality, Equity

4. Education

5. Legal
e.g., GDPR, HIPAA

8. Security
Privacy, Confidentiality, Integrity

10. Scale & Fault-tolerance

7. Declarative Programming

Intelligent Infrastructures

X. Internet & Telecom

I. Social Media

III. IoT
Smart cities, Smart vehicles, Smart*

XI. Datacenters & Clouds

IV. Finance V. Energy
Oil, Gas, Nuclear

VII. Materials & Manufacturing

VI. Utilities

VIII. Healthcare

IX. Supply-Chain

E. Future of News

H. Future of Markets

II. Intelligent Web

L. Future of Peace

XII. Defense

G. Future of Communities

9. Reliability

Systems Researchers Need to do this more!

Systems Researchers Do These Very well!

20

