Devices as Services

Fatih Bakir¹. Rich Wolski¹. Chandra Krintz¹. Gowri Sankar Ramachandran²

- 1. University of California Santa Barbara
- 2. University of Southern California

Center for Cyber-Physical Systems and the Internet of Things

Devices as Services

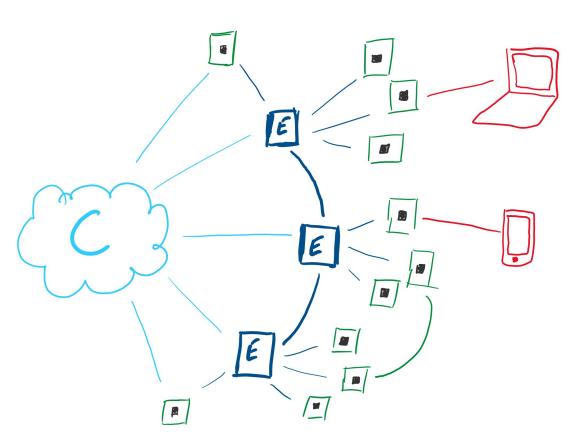
- More and more focus on Edge
 - Low latency
 - Better scaling
- End devices are increasingly powerful
 - More memory, faster processors, more hardware
- Can perform tasks other than telemetry
 - Actuation
 - Computation, inference
- Our approach:
 - Treat end devices as *nanoservices*
 - Composition of nanoservices = applications

Nanoservices

- Services on microcontrollers
 - Difficult to program
 - Need a common paradigm across the board
 - Heterogeneity
 - Low power devices on internet: security

Overview:

- End to end FaaS (ie. Serverless)
- Composition of services
- Security


Programming

- A single FaaS platform
 - Run the same program on devices, edge and cloud
- Cspot
 - Low level, event driven programming
 - Coupled with append only storage abstraction
 - Custom OS on embedded
 - Open source: https://github.com/Mayhem-lab/cspot
- How to compose these services?

Edgeistry

- Orchestration for nanoservices
- Decentralized & highly distributed
- Service discovery
- Identity management
- Reverse proxying for devices
 - Anonymity
 - Speed matching
 - Caching

Overall Architecture

Security

- Conventional solutions don't work well on devices.
 - Asymmetric crypto computationally intensive
 - TLS needs large buffers (>16K) for packets
- A lightweight security primitive is needed
- Our approach: Capabilities using HMACs
 - Very efficient, runs on 8 bit microcontrollers with 2K RAM
 - Allows for distributed sharing, without the device
 - Full policy delegation to clients
 - o Composable
- Privacy and authentication are orthogonal!
- How would end to end numbers look like?

Results & Evaluation

- End to end latency comparison vs Amazon Web Services (AWS)
- AWS: Device -> Cloud (Handle with lambda, store in dynamodb, RSA2048)
- Our: Device -> Edge -> Cloud (Handle with cspot, store with cspot, capabilities)
- *AWS:* 5,578 milliseconds
- Our: 608 milliseconds
 - An order of magnitude faster
- Micro benchmarks (on ESP8266 WiFi SoC)

Microbenchmarks for capabilities

Algorithm	Sign Time	Verify Time
PKCS1 (2048 Bits)	3280 ms	187 ms
ECDSA (256 Bits)	214 ms	4340 ms
HMAC-SHA256 (128 bit key)	0.37 ms	0.37 ms
Our Work	0.58 ms	0.9 ms

Operation	Time
RSA Handshake (2048 Bit)	3.95 Seconds

Conclusion

- Can build FaaS end to end
- Portable to many architectures
- Ability for efficient authentication on the device is key
- Devices as services is a viable approach for IoT

Discussion

1. Open questions:

- a. How to incorporate privacy efficiently?
- b. How does discovery get done?
- c. How to commission new devices?

2. Feedback

- a. Are there counterexamples?
- 3. Controversial points
 - a. Internet is built backwards for IoT
 - b. Services with duty cycles?
- 4. How this fails
 - a. Assumes devices will increase in power & functionality

