
1

Convergent Dispersal:

Toward Storage-Efficient Security

in a Cloud-of-Clouds

Mingqiang Li1, Chuan Qin1, Patrick P. C. Lee1, Jin Li2

1The Chinese University of Hong Kong, 2Guangzhou University

HotStorage ’14

Single Cloud Problems

2

Single point of failure:

Vendor lock-in:

Cloud-of-Clouds

Exploits diversity of multiple cloud storage vendors:

• Provides fault tolerance

• Avoids vendor lock-in

• Improves security 3

Diversity  Security

Threat model: provides data confidentiality

Traditional encryption:

• Encrypts data with a key and protects the key

• Key management is challenging

 Leveraging diversity:

• Disperses data across multiple clouds

• Data remains confidential even if a subset of clouds is

compromised

• Assumption: infeasible for attackers to compromise all clouds

• Security is achieved without keys  keyless security

4

Keyless Security

Major building block: dispersal algorithm

• Given a secret, outputs multiple shares

• Secret remains inaccessible without enough shares

5

Dispersal Algorithm

 (n, k, r) dispersal algorithm:

• Secret is dispersed into n shares

• Secret can be reconstructed from any k shares (k < n)

• Secret cannot be inferred (even partially) from any r

shares (r < k)

• Example: (4, 3, 2)

6

Nothing!

State of the Art

Ramp secret sharing scheme (RSSS) [Blakley and

Meadows, CRYPTO’84]

• Combines Rabin’s information dispersal (r = 0) and

Shamir’s secret sharing scheme (r = k-1)

• Makes tradeoff between storage space and security

AONT-RS [Resch et al., FAST’11]

• Combines all-or-nothing-transform and Reed-

Solomon encoding

Main idea: embeds random information into

dispersed data

7

Deduplication

Cloud storage uses deduplication to save cost

Deduplication avoids storing multiple data

copies with identical content

• Saves storage space

• Saves write bandwidth

However, state-of-the-art dispersal algorithms

break deduplication

• Root cause: security builds on embedded

randomness

8

Deduplication

9

Identical

content
Different shares!

Random information

Random information

Q: Can we preserve both deduplication and

keyless security in dispersal algorithms?

Our Contributions

Convergent Dispersal: a data dispersal design

that preserves both dedup and keyless security

• Can be generalized for any distributed storage systems

Two implementations:

• CRSSS: builds on RSSS [Blakley and Meadows, CRYPTO’84]

• CAONT-RS: builds on AONT-RS [Resch et al., FAST’11]

Evaluation on computational performance

• CRSSS and CAONT-RS are complementary in

performance for different parameters

• Best of CRSSS and CAONT-RS achieves ≥ 200MB/s

10

Key Idea

 Inspired by convergent encryption [Douceur et al., ICDCS’02]

• Key is derived from cryptographic hash of the content

• Key is deterministic: same content  same ciphertext

Convergent dispersal:

11

Replace random information

with secret’s hashes

Same secret  same shares

Deployment Scenario

12

Avoids cross-user dedup

due to side-channel attacks
[Harnik et al., IEEE S&P’10]

Owned by organization

Single-user

dedup before

uploads

Organization

Cross-user

dedup by

VMs

CRSSS

Example: n = 6, k = 5, r = 2

13

Replace r random words with

r hashes

CRSSS

Generate r hashes from k-r secret words:

• D = data block of the k-r secret words

• i = index

• H = cryptographic hash function (e.g., SHA-256)

14

CAONT-RS

Example: n =4, k=3, r = k -1 = 2:

15

Replace the random key with

a hash

CAONT-RS

Transform s secret words d0, d1, …, ds-1 into s+1

CAONT words c0, c1, …, cs:

• ⊕ = XOR operator

• hkey = hash key generated from the secret via a

cryptographic hash function (e.g., SHA-256)

• i = index

• E = encryption function (e.g., AES-256)

16

Evaluation Setup

Evaluate the computational throughput of CRSSS

and CAONT-RS

Setup:

• OpenSSL for encryption (AES-256) and hash (SHA-256)

• Jerasure [Plank, 2014] & GF-Complete [Plank, 2013] for encoding

• Implementation in C

Compare:

• RSSS vs. CRSSS

• AONT-RS vs. CAONT-RS

• CRSSS vs. CAONT-RS
17

Evaluation

18

m = n - k

Evaluation

19

 CRSSS has much higher overhead (~30%) than RSSS due

to more hash computations; yet, CAONT-RS has limited

overhead (~8%) over AONT-RS

m = n - k

Evaluation

20

 CRSSS and CAONT-RS are complementary in performance:

CRSSS decreases in throughput due to more hashes, while

CAONT-RS increases in throughput due to RS encoding

m = n - k

Evaluation

21

 For smaller r, CRSSS achieves much higher throughput

(>400MB/s), but with higher storage overhead

 tradeoff between throughput and storage

m = n - k

Conclusions

Defines a framework of convergent dispersal

that enables keyless security and deduplication

Two implementations based on state-of-the-art:

CRSSS and CAONT-RS

• Both are complementary in performance

Future work:

• Complete cloud storage prototype

• Cost-performance analysis

• Security analysis

• Evaluation in real-world deployment

22

