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What Is Consistency, And Why Is It Important?

« What if you lose your precious data?

« How we can build a crash consistency system?

— Turn on one of the consistency mechanisms
 Journaling, copy-on-write, and logging

[Source: https://n2ws.com/blog/ebs-snapshot/transaction-logs-and-journaling]



Where To Handle Consistency Mechanism?

* File system-level 8
— Journaling: ext3, ext4, and XFS btrc DfS
— Copy-on-write: Btrfs and ZFS

— Logging: F2FS Ext Z
File System

OpenZFS

- Application-level
— Database: MySQL, Oracle, and SQLite
— Editor: Vim




Motivation

« Consistency mechanisms need extra writes to keep the
file system to a consistent state

— Redundant writes in journaling
— Copy writes in copy-on-write
— Additional writes in log-structured

» Research question

— Can we guarantee crash consistency by writing the data
only once?
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Flash Storage Device

» Flash storage device uses a special software inside the
storage
— FTL (flash translation layer): it emulates overwrite behavior by
remapping its own mapping table

Write (LPNZ2)
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SHARE Interface

 SHARE interface [SIGMOD’16] allows host to explicitly
ask FTL to change its internal address mapping table

— Target PPN is shared via address remapping
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SHARE Interface

 SHARE interface [SIGMOD’16] allows host to explicitly
ask FTL to change its internal address mapping table

— Target PPN is shared via address remapping
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« SHARE atomically supports multi-address remapping
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Remapping Approaches in Various Cases

« Which layer
— JFTL [ACM TOS'09] -> FTL layer
— ANVIL [USENIX FAST'15] -> Virtual storage layer
— SHARE [ACM SIGMOD’16] -> FTL layer
— Janus [USENIX ATC'17] -> FTL with File system layer
— SHRD [USENIX FAST'17] -> FTL with Block layer
— Ext4-lazy [USENIX FAST'17] -> File system layer
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Remapping Approaches in Various Cases

« What purposes
— JFTL [ACM TOS'09] -> File system-level consistency
— ANVIL [USENIX FAST’15] -> File system-level consistency
— SHARE [ACM SIGMOD'16] -> Application-level consistency
— Janus [USENIX ATC'17] -> Defragmentation
— SHRD [USENIX FAST'17] -> Sequential writes
— Ext4-lazy [USENIX FAST'17] -> Sequential writes
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Case Study 1: Ext4

 Traditional Ext4 file system writes same data twice to
guarantee crash consistency

@® Original Write (LPN 2) @ Journal Write(LPN 7)
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Case Study 1: Ext4

 Traditional Ext4 file system writes same data twice to
guarantee crash consistency

@® Original Write (LPN 2) @ Journal Write(LPN 7)
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- SHARE-aware Ext4 can remove the second write
by delegating it to SHARE

— SHARE-aware ordered journaling (50J) mode
— SHARE-aware data journaling (SDJ) mode



Case Study 1: Ext4

« For example (Data journaling mode)

Write Update Write Update
A—A Meta B—B’ Meta Commit Checkpoint
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Case Study 1: Ext4

« For example (Data journaling mode)

Write Update Write Update
A—A Meta B—B’ Meta Commit Checkpoint
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Case Study 1: Ext4

 Performance (FIO and Varmail)
— S0J shows better performance than traditional OJ
— SDJ has significantly performance gain at large fsync interval
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Case Study 2: LFS

 EXisting LFS basically requires the segment cleaning
operation to reclaim free space

Move

N B H EEEE

Segment 1 Segment 2 Segment 3

- SHARE-aware LFS can remove the move operation
by delegating it to SHARE

— SHARE-aware segment cleaning (S5C)



Case Study 2: LFS

« Performance (FIO)
— The number of total moved pages is similar to that of SC
— But, SSC shows better performance than default SC
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Case Study 3: Application

* Some applications (e.g., databases and key-value stores) have
their own consistency mechanisms even with Ext4 DJ mode

— Double write buffer in MySQL

« In D] mode, the transaction of file system may break the
atomicity of the database application

Commit Commit
g <
4[ Database atomicity unit } » Time

FS atomic unit ]—[ FS atomic unit ]—[ FS atomic unit | » Time

28



Case Study 3: Application

* Some applications (e.g., databases and key-value stores) have
their own consistency mechanisms even with Ext4 DJ mode

— Double write buffer in MySQL

« In D] mode, the transaction of file system may break the
atomicity of the database application

Commit Commit

o O
Y 1

4[ Database atomicity unit " » Time
%Power failure

N\

FS atomic unit ]—[ FS atomic unit ]—[ FS atomic unit | » Time

29



Case Study 3: Application

 The ACID semantics of database transactions can
be successfully guaranteed via SHARE

— SHARE-aware application-level data journaling (SADJ]) mode

« It utilizes the failure-atomic update APIs [EUROSYS13]
— O_ATOMIC flag, failure-atomic msync(), and syncv() interface

O _ATOMIC Commit Commit Fsync()
l © ¢ |
—[ Database atomicity unit } » Time

—[ FS atomic unit ]—[ FS atomic unit H FS atomic unit ]——» Time
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Case Study 3: Application

» Performance (MySQL/InnoDB)

— DWB-OFF/SADJ outperforms the DWB-ON/OJ by 6.16 times
and the DWB-OFF/DJ] by 2.73 times

— DWB-OFF/SADJ invokes 16.4x less disk cache FLUSH operations
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Outline

« Implementation & Challenges
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Implementation & Challenges

« Implementation
— Linux kernel 4.6.7
— Quad-core processor (Intel i7-6700) and 8GB memory

— SHARE interface

« SHARE-enabled SSD by modifying an FTL firmware of a commercial
high-end PCIeM.2 SSD

« SHARE command has been added as a vendor unique command

« Challenges
— the small-size journal area (i.e., 128 MB)
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Conclusion

» Tackled a problem in current consistency mechanisms
— Double write overhead
— Segment cleaning overhead

* Presented a comprehensive study with the address
remapping technique

» Feature work
— CoW-based B-tree file systems need to be explored
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