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What Is Consistency, And Why Is It Important? 

• What if you lose your precious data?

• How we can build a crash consistency system?

– Turn on one of the consistency mechanisms

• Journaling, copy-on-write, and logging

2

[Source: https://n2ws.com/blog/ebs-snapshot/transaction-logs-and-journaling]



Where To Handle Consistency Mechanism?

• File system-level 

– Journaling: ext3, ext4, and XFS

– Copy-on-write: Btrfs and ZFS

– Logging: F2FS

• Application-level

– Database: MySQL, Oracle, and SQLite

– Editor: Vim
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F2FS



Motivation

• Consistency mechanisms need extra writes to keep the 
file system to a consistent state

– Redundant writes in journaling

– Copy writes in copy-on-write

– Additional writes in log-structured

• Research question

– Can we guarantee crash consistency by writing the data 
only once?

4



Outline

• Background

• Related work

• Case studies

• Implementation & Challenges

• Conclusion
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Flash Storage Device

• Flash storage device uses a special software inside the 
storage

– FTL (flash translation layer): it emulates overwrite behavior by 
remapping its own mapping table
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SHARE Interface

• SHARE interface [SIGMOD’16] allows host to explicitly 
ask FTL to change its internal address mapping table

– Target PPN is shared via address remapping
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SHARE Interface

• SHARE interface [SIGMOD’16] allows host to explicitly 
ask FTL to change its internal address mapping table

– Target PPN is shared via address remapping

• SHARE atomically supports multi-address remapping 
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Remapping Approaches in Various Cases

• Which layer

– JFTL [ACM TOS’09] -> FTL layer

– ANViL [USENIX FAST’15] -> Virtual storage layer 

– SHARE [ACM SIGMOD’16] -> FTL layer

– Janus [USENIX ATC’17] -> FTL with File system layer

– SHRD [USENIX FAST’17] -> FTL with Block layer

– Ext4-lazy [USENIX FAST’17] -> File system layer
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Remapping Approaches in Various Cases

• What purposes

– JFTL [ACM TOS’09] -> File system-level consistency

– ANViL [USENIX FAST’15] -> File system-level consistency

– SHARE [ACM SIGMOD’16] -> Application-level consistency

– Janus [USENIX ATC’17] -> Defragmentation

– SHRD [USENIX FAST’17] -> Sequential writes

– Ext4-lazy [USENIX FAST’17] -> Sequential writes
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Case Study 1: Ext4

• Traditional Ext4 file system writes same data twice to 
guarantee crash consistency
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Case Study 1: Ext4

• Traditional Ext4 file system writes same data twice to 
guarantee crash consistency

• SHARE-aware Ext4 can remove the second write 
by delegating it to SHARE
– SHARE-aware ordered journaling (SOJ) mode 

– SHARE-aware data journaling (SDJ) mode
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Case Study 1: Ext4

• For example (Data journaling mode)

21

: Clean data : Dirty data : Dirty metadata : Journal location : Original location

A

Time

DJ

Write
A→A’

Write
B→B’

Update
Meta

MA’A’B B’

Update
Meta

MB’

Commit Checkpoint

MA’ A’ B’MB’MA’ MB’ A’ B’



Case Study 1: Ext4

• For example (Data journaling mode)
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Case Study 1: Ext4

• Performance (FIO and Varmail)

– SOJ shows better performance than traditional OJ

– SDJ has significantly performance gain at large fsync interval

23

0

2

4

6

8

10

12

14

16

8 16 32 64 128

IO
P

S
 (

x
1

0
0

0
)

Fsync Interval

OJ SOJ DJ SDJ

[FIO performance]

8% slower than OJ
But, high consistency-level 



Case Study 1: Ext4

• Performance (FIO and Varmail)

– SOJ shows better performance than traditional OJ

– SDJ has significantly performance gain at large fsync interval
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Case Study 2: LFS

• Existing LFS basically requires the segment cleaning 
operation to reclaim free space

• SHARE-aware LFS can remove the move operation 
by delegating it to SHARE

– SHARE-aware segment cleaning (SSC)
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Case Study 2: LFS

• Performance (FIO)

– The number of total moved pages is similar to that of SC

– But, SSC shows better performance than default SC 
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• Performance (FIO)

– The number of total moved pages is similar to that of SC

– But, SSC shows better performance than default SC 
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Case Study 3: Application

• Some applications (e.g., databases and key-value stores) have 
their own consistency mechanisms even with Ext4 DJ mode

– Double write buffer in MySQL

• In DJ mode, the transaction of file system may break the 
atomicity of the database application

28
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Case Study 3: Application

• Some applications (e.g., databases and key-value stores) have 
their own consistency mechanisms even with Ext4 DJ mode

– Double write buffer in MySQL

• In DJ mode, the transaction of file system may break the 
atomicity of the database application
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Case Study 3: Application

• The ACID semantics of database transactions can  
be successfully guaranteed via SHARE

– SHARE-aware application-level data journaling (SADJ) mode

• It utilizes the failure-atomic update APIs [EUROSYS’13]

– O_ATOMIC flag, failure-atomic msync(), and syncv() interface
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Case Study 3: Application

• Performance (MySQL/InnoDB)

– DWB-OFF/SADJ outperforms the DWB-ON/OJ by 6.16 times 
and the DWB-OFF/DJ by 2.73 times

– DWB-OFF/SADJ invokes 16.4x less disk cache FLUSH operations
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Implementation & Challenges

• Implementation 

– Linux kernel 4.6.7 

– Quad-core processor (Intel i7-6700) and 8GB memory

– SHARE interface 

• SHARE-enabled SSD by modifying an FTL firmware of a commercial 
high-end PCIeM.2 SSD 

• SHARE command has been added as a vendor unique command

• Challenges

– the small-size journal area (i.e., 128 MB)
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Conclusion

• Tackled a problem in current consistency mechanisms

– Double write overhead

– Segment cleaning overhead

• Presented a comprehensive study with the address 
remapping technique

• Feature work

– CoW-based B-tree file systems need to be explored
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Thank you!

Questions?
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