When Address Remapping Techniques Meet
Consistency Guarantee Mechanisms

Dong Hyun Kang, Gihwan Oh, Dongki KimT, In Hwan Doht,
Changwoo Min%, Sang-Won Lee, and Young Ik Eom
Sungkyunkwan University tSamsung Electronics #Virginia Tech

S,

QS

E,UNC‘&}
«insmﬁf‘

VIRGINIA
@ TECH.

What Is Consistency, And Why Is It Important?

« What if you lose your precious data?

« How we can build a crash consistency system?

— Turn on one of the consistency mechanisms
 Journaling, copy-on-write, and logging

[Source: https://n2ws.com/blog/ebs-snapshot/transaction-logs-and-journaling]

Where To Handle Consistency Mechanism?

* File system-level 8
— Journaling: ext3, ext4, and XFS btrc DfS
— Copy-on-write: Btrfs and ZFS

— Logging: F2FS Ext Z
File System

OpenZFS

- Application-level
— Database: MySQL, Oracle, and SQLite
— Editor: Vim

Motivation

« Consistency mechanisms need extra writes to keep the
file system to a consistent state

— Redundant writes in journaling
— Copy writes in copy-on-write
— Additional writes in log-structured

» Research question

— Can we guarantee crash consistency by writing the data
only once?

Outline

Background

Related work

Case studies

Implementation & Challenges

Conclusion

Flash Storage Device

» Flash storage device uses a special software inside the
storage
— FTL (flash translation layer): it emulates overwrite behavior by
remapping its own mapping table

Write (LPNZ2)

¥
tpN (1] [2] 3] 4] .. [7] [8] o

Page Mapping Table
(L2P)

PPN 1] |2 (3] |4l . |71 18] |9

Flash Storage Device

» Flash storage device uses a special software inside the
storage
— FTL (flash translation layer): it emulates overwrite behavior by
remapping its own mapping table

Write (LPNZ2)

¥
tpN (1] [2] 3] 4] .. [7] [8] o

Page Mapping Table
(L2P)

PPN |1 X (3] (4]l . |71 18] |9

Flash Storage Device

» Flash storage device uses a special software inside the
storage
— FTL (flash translation layer): it emulates overwrite behavior by
remapping its own mapping table

Read (LPN2)

¥
tpN (1] [2] 3] 4] .. [7] [8] o

Page Mapping Table
(L2P)

PPN 1] |2 (3] |4l . |71 18] |9

SHARE Interface

 SHARE interface [SIGMOD’16] allows host to explicitly
ask FTL to change its internal address mapping table

— Target PPN is shared via address remapping

Write (LPN 7)

\ 4
LPN |1 |2 I3 |4l . |71 18] |9

Page Mapping Table
(L2P)

PPN 1] |2 (3] |4l . |71 18] |9

SHARE Interface

 SHARE interface [SIGMOD’16] allows host to explicitly
ask FTL to change its internal address mapping table

— Target PPN is shared via address remapping

SHARE (LPNZ2, LPN 7)

\ 4
LPN |1 |2 I3 |4l . |71 18] |9

Page Mapping Table
(L2P)

PPN |1 X (3] (4l . |71 18] |9

SHARE Interface

 SHARE interface [SIGMOD’16] allows host to explicitly
ask FTL to change its internal address mapping table

— Target PPN is shared via address remapping

SHARE (LPNZ2, LPN 7)

\ 4
LPN |1 |2 I3 |4l . |71 18] |9

Page Mapping Table
(L2P)

PPN 1] |2 (3] |4l . |71 18] |9

SHARE Interface

 SHARE interface [SIGMOD’16] allows host to explicitly
ask FTL to change its internal address mapping table

— Target PPN is shared via address remapping

SHARE (LPNZ2, LPN 7)

A
. LPN | 1] [2] [3] [4 7] 18] |9
Page Mapping Table
(L2P)
PPN | 1] (2] |3] 4] . L7] 18] |9

« SHARE atomically supports multi-address remapping

« Related work

Outline

13

Remapping Approaches in Various Cases

« Which layer
— JFTL [ACM TOS'09] -> FTL layer
— ANVIL [USENIX FAST'15] -> Virtual storage layer
— SHARE [ACM SIGMOD’16] -> FTL layer
— Janus [USENIX ATC'17] -> FTL with File system layer
— SHRD [USENIX FAST'17] -> FTL with Block layer
— Ext4-lazy [USENIX FAST'17] -> File system layer

14

Remapping Approaches in Various Cases

« What purposes
— JFTL [ACM TOS'09] -> File system-level consistency
— ANVIL [USENIX FAST’15] -> File system-level consistency
— SHARE [ACM SIGMOD'16] -> Application-level consistency
— Janus [USENIX ATC'17] -> Defragmentation
— SHRD [USENIX FAST'17] -> Sequential writes
— Ext4-lazy [USENIX FAST'17] -> Sequential writes

15

Remapping Approaches in Various Cases

« What purposes
— JFTL [ACM TOS'09] -> File system-level consistency
— ANVIL [USENIX FAST’15] -> File system-level consistency
— SHARE [ACM SIGMOD'16] -> Application-level consistency
— Janus [USENIX ATC'17] -> Defragmentation
— SHRD [USENIX FAST'17] -> Sequential writes
— Ext4-lazy [USENIX FAST'17] -> Sequential writes

16

Remapping Approaches in Various Cases

« What purposes
— JFTL [ACM TOS'09] -> File system-level consistency
— ANVIL [USENIX FAST’15] -> File system-level consistency
— SHARE [ACM SIGMOD'16] -> Application-level consistency
— Janus [USENIX ATC'17] -> Defragmentation
— SHRD [USENIX FAST'17] -> Sequential writes
— Ext4-lazy [USENIX FAST'17] -> Sequential writes

17

Outline
Background

Related work
Case studies
Implementation & Challenges

Conclusion

18

Case Study 1: Ext4

 Traditional Ext4 file system writes same data twice to
guarantee crash consistency

@® Original Write (LPN 2) @ Journal Write(LPN 7)

\ 4 \ 4
LPN (1] |2] 3| (4| . |7 18] |9

Page Mapping Table
(L2P)

PPN |1 2| |3 4| . |71 8] |9

Case Study 1: Ext4

 Traditional Ext4 file system writes same data twice to
guarantee crash consistency

@® Original Write (LPN 2) @ Journal Write(LPN 7)

¥ \ 4
. LPN |1 2] 13| |4 71 Is] [9] -
Page Mapping Table
(L2P)
PPN |1]| (2] |3] |4 71 18] |9] -

- SHARE-aware Ext4 can remove the second write
by delegating it to SHARE

— SHARE-aware ordered journaling (50J) mode
— SHARE-aware data journaling (SDJ) mode

Case Study 1: Ext4

« For example (Data journaling mode)

Write Update Write Update
A—A Meta B—B’ Meta Commit Checkpoint

AUV S G U 2 2

v

Time

ZaMxgMaa A LB IR —S M, 2M; LA T B’

O : Clean data ‘ : Dirty data . : Dirty metadata : Journal location wmms : Original location

21

Case Study 1: Ext4

« For example (Data journaling mode)

Write Update Write Update
A—A Meta B—B’ Meta Commit Checkpoint

AUV S G U 2 2

Time

v

Share LPNs

O : Clean data . : Dirty data . : Dirty metadata : : Journal location

: Original location

22

Case Study 1: Ext4

 Performance (FIO and Varmail)
— S0J shows better performance than traditional OJ
— SDJ has significantly performance gain at large fsync interval

-#&-0J -£-S0)] ——DJ —e—SDJ
16 8% slower than O)J
14 - But, high consistency-level

/-\12_
S 10 -

IOPS (x1000

O N B~ OO
[T R

8 16 32 64 128
Fsync Interval

[FIO performance]

Case Study 1: Ext4

 Performance (FIO and Varmail)
— S0J shows better performance than traditional OJ
— SDJ has significantly performance gain at large fsync interval

-/-0J -8-S0)] ——DJ —e—SDJ

16

14 -
Alz_
S 10 -

IOPS (x1000

O N B~ OO
[T R

8 16 32 64 128
Fsync Interval

[FIO performance]

8% slower than O)J
But, high consistency-level

9% slower than OJ
But, high consistency-level

200

= =
®) o))
o (= o

Throughput (MB/s)

N
o

0 _

133.2 138 5 121.6

T

SOJ DJ SDJ
[Varma|I performance]

24

Case Study 2: LFS

 EXisting LFS basically requires the segment cleaning
operation to reclaim free space

Move

N B H EEEE

Segment 1 Segment 2 Segment 3

- SHARE-aware LFS can remove the move operation
by delegating it to SHARE

— SHARE-aware segment cleaning (S5C)

Case Study 2: LFS

« Performance (FIO)
— The number of total moved pages is similar to that of SC
— But, SSC shows better performance than default SC

700 . In SSC, move is changed to

5600 | mSSC TS SHARE
S T Ss

X 500 - - Bl P

j®]
2 400 -
o

%300 .

[<5]
(@)

S 200 -

2 100 -
0

8 16 32 64 128
Fsync Interval

[The number of total moved pages] 26

Case Study 2: LFS

« Performance (FIO)
— The number of total moved pages is similar to that of SC
— But, SSC shows better performance than default SC

700

S 600
S
S

X 500 -

o]
2 400 -
o

=

o 300 -

[<5]
(@)

S 200 -

Y

> 100 -

0

Fsync Interval

OSC e
- mSsc 4 T~
4 __ \\
8 16 32 64 128

In SSC, move is changed to
SHARE

39% faster than SC

[The number of total moved pages]

14 -
12 -

IOPS (x1000)

=
o
!

O N B~ OO 0
! ! !

i

aSsc
mSSC

8

16 32 64

Fsync Interval

[Performance]

128

27

Case Study 3: Application

* Some applications (e.g., databases and key-value stores) have
their own consistency mechanisms even with Ext4 DJ mode

— Double write buffer in MySQL

« In D] mode, the transaction of file system may break the
atomicity of the database application

Commit Commit
g <
4[Database atomicity unit } » Time

FS atomic unit]—[FS atomic unit]—[FS atomic unit | » Time

28

Case Study 3: Application

* Some applications (e.g., databases and key-value stores) have
their own consistency mechanisms even with Ext4 DJ mode

— Double write buffer in MySQL

« In D] mode, the transaction of file system may break the
atomicity of the database application

Commit Commit

o O
Y 1

4[Database atomicity unit " » Time
%Power failure

N\

FS atomic unit]—[FS atomic unit]—[FS atomic unit | » Time

29

Case Study 3: Application

 The ACID semantics of database transactions can
be successfully guaranteed via SHARE

— SHARE-aware application-level data journaling (SADJ]) mode

« It utilizes the failure-atomic update APIs [EUROSYS13]
— O_ATOMIC flag, failure-atomic msync(), and syncv() interface

O _ATOMIC Commit Commit Fsync()
l © ¢ |
—[Database atomicity unit } » Time

—[FS atomic unit]—[FS atomic unit H FS atomic unit]——» Time

30

Case Study 3: Application

» Performance (MySQL/InnoDB)

— DWB-OFF/SADJ outperforms the DWB-ON/OJ by 6.16 times
and the DWB-OFF/DJ] by 2.73 times

— DWB-OFF/SADJ invokes 16.4x less disk cache FLUSH operations

7.0 18 2.0
—_ OLinkBench 6.0 ' 1.7
S 60 T — 18
% ' @ SysBench 51 16
5 %0 T] 14
c
g 40 1 12
w
5 40 1 0.8 10
E) 29 0.8
S 20 1 0.6
< 1.0 03 0.4
&0 |_| 0.2
o) 93 o) 9\ \0\ \9\ \Q\ 9\
N OQQ\ O@\ Q\%b S 6\%?»

DT ® @ o Y (W L0
OQl 9*“l o*l Q@b OQQ OQQ o“l OQ;%

[Performance]

Case Study 3: Application

» Performance (MySQL/InnoDB)

— DWB-OFF/SADJ outperforms the DWB-ON/OJ by 6.16 times
and the DWB-OFF/DJ] by 2.73 times

— DWB-OFF/SADJ invokes 16.4x less disk cache FLUSH operations

Operations Per Second (x1000)

7.0 18 2.0 45.0 35.0
OLinkBench 6.0 ' 1.7 38 O LinkBench
60 4 _ 18 400 + 6 29
' mSysBench ¢4 16 %50 — >° SysBench 30.0
50 + — o 25.0
L4 0 500 1
a0 4 1202 ol 20.0
1.0 =
30 1 - 08 0g & 200 T 2947 150
20 + . 06 £ 1507 10.0
1.0 0.3 04 > 100 4
10 |_| 0.2 50 4 50
o) 9\ %) Q\ %) 9\ o 9\ o 9 N N o N N 9
Ql%’0$\%,OQQ\Q,OQQ\QQQ\%;%’0$\$,O§Q\%’OQQ\OQQ\%?’ %’Oé\@pé\zp@%\%Q%’Oé\wo@zo@\%\%bg

[Performance] [Write amount]

Case Study 3: Application

» Performance (MySQL/InnoDB)

— DWB-OFF/SADJ outperforms the DWB-ON/OJ by 6.16 times
and the DWB-OFF/DJ] by 2.73 times

— DWB-OFF/SADJ invokes 16.4x less disk cache FLUSH operations

Operations Per Second (x1000)

7.0 - 1.8 2.0 45.0 35.0 250.0 - 120.0
OLinkBench 6.0 ' 1.7 18 100 38 29I:I LinkBench = 212 OLinkBench
6.0 + — ' YT — 36 30.0 = — 95.8 mSysBench
WSysBench ¢4 16 ~ a0 | - SysBench %:, 2000 4 Y 100.0
5.0 14 B 400 4 25.0 g 80.0
40 - 1.2 § 50 | 20.0 E 150.0 +
08 1.0 2 19 p 60.0
. 4 <
30 + 25 08 E 20.0 17 15.0 S 1000 +
20 + 06 £ BOT o 9 40.0
' 03 = 1 ' 2
1.0 0.4 10.0 O 500 4
10 4 02 50 1 50 = 16 13 103 gg 12.0| 20.0
|_| | | * 05,0
9 3 N N N N 9 3 . S\ I 3\ I rx B rx - \Y <\ S N\ N N 9 N N 3 N
%,O$\O QQQ\O QQQ\OQQ\%?’O%Q@Z 0@2 OQQ\O@\%?’O ?)Cﬁ\o OQQ\O OQQ\OQ Q\cp?vo?) 0$\O OQQ\Q OQQ\O Q\%?»Q ® O@‘: O@: @\i{ﬁ q,:;) Qé\% OQQ\Q OQQ\OQ\%?’O
,%/ ,%/ ’O -, e ,0 - P A ’ A P -, ’ ’O ’ - ’O
[Performance] [Write amount] [# of Disk cash flush]

33

Outline

« Implementation & Challenges

34

Implementation & Challenges

« Implementation
— Linux kernel 4.6.7
— Quad-core processor (Intel i7-6700) and 8GB memory

— SHARE interface

« SHARE-enabled SSD by modifying an FTL firmware of a commercial
high-end PCIeM.2 SSD

« SHARE command has been added as a vendor unique command

« Challenges
— the small-size journal area (i.e., 128 MB)

35

Outline
Background

Related work
Case studies
Implementation & Challenges

Conclusion

36

Conclusion

» Tackled a problem in current consistency mechanisms
— Double write overhead
— Segment cleaning overhead

* Presented a comprehensive study with the address
remapping technique

» Feature work
— CoW-based B-tree file systems need to be explored

37

Thank you!

Questions?

S,

g . @ VIRGINIA

- 1398 5 TECH
ar*?amqf}

38

