
When Address Remapping Techniques Meet
Consistency Guarantee Mechanisms

Dong Hyun Kang, Gihwan Oh, Dongki Kim†, In Hwan Doh†,

Changwoo Min‡, Sang-Won Lee, and Young Ik Eom

Sungkyunkwan University †Samsung Electronics ‡Virginia Tech

What Is Consistency, And Why Is It Important?

• What if you lose your precious data?

• How we can build a crash consistency system?

– Turn on one of the consistency mechanisms

• Journaling, copy-on-write, and logging

2

[Source: https://n2ws.com/blog/ebs-snapshot/transaction-logs-and-journaling]

Where To Handle Consistency Mechanism?

• File system-level

– Journaling: ext3, ext4, and XFS

– Copy-on-write: Btrfs and ZFS

– Logging: F2FS

• Application-level

– Database: MySQL, Oracle, and SQLite

– Editor: Vim

3

F2FS

Motivation

• Consistency mechanisms need extra writes to keep the
file system to a consistent state

– Redundant writes in journaling

– Copy writes in copy-on-write

– Additional writes in log-structured

• Research question

– Can we guarantee crash consistency by writing the data
only once?

4

Outline

• Background

• Related work

• Case studies

• Implementation & Challenges

• Conclusion

5

Flash Storage Device

• Flash storage device uses a special software inside the
storage

– FTL (flash translation layer): it emulates overwrite behavior by
remapping its own mapping table

6

Page Mapping Table
(L2P)

1 32 4 7 8 9LPN

1 2 3 4 7 8 9PPN

Write (LPN2)

…

…

Flash Storage Device

• Flash storage device uses a special software inside the
storage

– FTL (flash translation layer): it emulates overwrite behavior by
remapping its own mapping table

7

Page Mapping Table
(L2P)

1 32 4 7 8 9LPN

1 2 3 4 7 8 9PPN

Write (LPN2)

…

…

Flash Storage Device

• Flash storage device uses a special software inside the
storage

– FTL (flash translation layer): it emulates overwrite behavior by
remapping its own mapping table

8

Page Mapping Table
(L2P)

1 32 4 7 8 9LPN

1 2 3 4 7 8 9PPN

Read (LPN2)

…

…

SHARE Interface

• SHARE interface [SIGMOD’16] allows host to explicitly
ask FTL to change its internal address mapping table

– Target PPN is shared via address remapping

9

Page Mapping Table
(L2P)

1 32 4 7 8 9LPN

1 2 3 4 7 8 9PPN

…

…

Write (LPN 7)

SHARE Interface

• SHARE interface [SIGMOD’16] allows host to explicitly
ask FTL to change its internal address mapping table

– Target PPN is shared via address remapping

10

Page Mapping Table
(L2P)

1 32 4 7 8 9LPN

1 2 3 4 7 8 9PPN

SHARE (LPN2, LPN 7)

…

…

SHARE Interface

• SHARE interface [SIGMOD’16] allows host to explicitly
ask FTL to change its internal address mapping table

– Target PPN is shared via address remapping

11

Page Mapping Table
(L2P)

1 32 4 7 8 9LPN

1 2 3 4 7 8 9PPN

SHARE (LPN2, LPN 7)

…

…

SHARE Interface

• SHARE interface [SIGMOD’16] allows host to explicitly
ask FTL to change its internal address mapping table

– Target PPN is shared via address remapping

• SHARE atomically supports multi-address remapping

12

Page Mapping Table
(L2P)

1 32 4 7 8 9LPN

1 2 3 4 7 8 9PPN

SHARE (LPN2, LPN 7)

…

…

Outline

• Background

• Related work

• Case studies

• Implementation & Challenges

• Conclusion

13

Remapping Approaches in Various Cases

• Which layer

– JFTL [ACM TOS’09] -> FTL layer

– ANViL [USENIX FAST’15] -> Virtual storage layer

– SHARE [ACM SIGMOD’16] -> FTL layer

– Janus [USENIX ATC’17] -> FTL with File system layer

– SHRD [USENIX FAST’17] -> FTL with Block layer

– Ext4-lazy [USENIX FAST’17] -> File system layer

14

Remapping Approaches in Various Cases

• What purposes

– JFTL [ACM TOS’09] -> File system-level consistency

– ANViL [USENIX FAST’15] -> File system-level consistency

– SHARE [ACM SIGMOD’16] -> Application-level consistency

– Janus [USENIX ATC’17] -> Defragmentation

– SHRD [USENIX FAST’17] -> Sequential writes

– Ext4-lazy [USENIX FAST’17] -> Sequential writes

15

Remapping Approaches in Various Cases

• What purposes

– JFTL [ACM TOS’09] -> File system-level consistency

– ANViL [USENIX FAST’15] -> File system-level consistency

– SHARE [ACM SIGMOD’16] -> Application-level consistency

– Janus [USENIX ATC’17] -> Defragmentation

– SHRD [USENIX FAST’17] -> Sequential writes

– Ext4-lazy [USENIX FAST’17] -> Sequential writes

16

Remapping Approaches in Various Cases

• What purposes

– JFTL [ACM TOS’09] -> File system-level consistency

– ANViL [USENIX FAST’15] -> File system-level consistency

– SHARE [ACM SIGMOD’16] -> Application-level consistency

– Janus [USENIX ATC’17] -> Defragmentation

– SHRD [USENIX FAST’17] -> Sequential writes

– Ext4-lazy [USENIX FAST’17] -> Sequential writes

17

Outline

• Background

• Related work

• Case studies

• Implementation & Challenges

• Conclusion

18

Case Study 1: Ext4

• Traditional Ext4 file system writes same data twice to
guarantee crash consistency

19

Page Mapping Table
(L2P)

1 32 4 7 8 9LPN

1 2 3 4 7 8 9PPN

…

…

…

…

❶ Journal Write(LPN 7)❷ Original Write(LPN 2)

Case Study 1: Ext4

• Traditional Ext4 file system writes same data twice to
guarantee crash consistency

• SHARE-aware Ext4 can remove the second write
by delegating it to SHARE
– SHARE-aware ordered journaling (SOJ) mode

– SHARE-aware data journaling (SDJ) mode

20

Page Mapping Table
(L2P)

1 32 4 7 8 9LPN

1 2 3 4 7 8 9PPN

…

…

…

…

❶ Journal Write(LPN 7)❷ Original Write(LPN 2)

Case Study 1: Ext4

• For example (Data journaling mode)

21

: Clean data : Dirty data : Dirty metadata : Journal location : Original location

A

Time

DJ

Write
A→A’

Write
B→B’

Update
Meta

MA’A’B B’

Update
Meta

MB’

Commit Checkpoint

MA’ A’ B’MB’MA’ MB’ A’ B’

Case Study 1: Ext4

• For example (Data journaling mode)

22

: Clean data : Dirty data : Dirty metadata : Journal location : Original location

A

Time

DJ

Write
A→A’

Write
B→B’

Update
Meta

MA’A’B B’

Update
Meta

MB’

Commit Checkpoint

MA’ A’ B’MB’MA’ MB’ A’ B’

ASDJ MA’A’B B’ MB’

MA’ MB’ A’ B’

Share LPNs

Performance gain

Case Study 1: Ext4

• Performance (FIO and Varmail)

– SOJ shows better performance than traditional OJ

– SDJ has significantly performance gain at large fsync interval

23

0

2

4

6

8

10

12

14

16

8 16 32 64 128

IO
P

S
 (

x
1

0
0

0
)

Fsync Interval

OJ SOJ DJ SDJ

[FIO performance]

8% slower than OJ
But, high consistency-level

Case Study 1: Ext4

• Performance (FIO and Varmail)

– SOJ shows better performance than traditional OJ

– SDJ has significantly performance gain at large fsync interval

24

0

2

4

6

8

10

12

14

16

8 16 32 64 128

IO
P

S
 (

x
1

0
0

0
)

Fsync Interval

OJ SOJ DJ SDJ

133.2 138.5

85.5

121.6

0

40

80

120

160

200

OJ SOJ DJ SDJ

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

[FIO performance] [Varmail performance]

8% slower than OJ
But, high consistency-level

9% slower than OJ
But, high consistency-level

Case Study 2: LFS

• Existing LFS basically requires the segment cleaning
operation to reclaim free space

• SHARE-aware LFS can remove the move operation
by delegating it to SHARE

– SHARE-aware segment cleaning (SSC)

25

A B C D A B C D

Move

Segment 1 Segment 2 Segment 3

Case Study 2: LFS

• Performance (FIO)

– The number of total moved pages is similar to that of SC

– But, SSC shows better performance than default SC

26

0

100

200

300

400

500

600

700

8 16 32 64 128

#
 o

f
 P

ag
es

 M
o

v
ed

 (
x

1
0

0
0

)

Fsync Interval

SC

SSC

[The number of total moved pages]

In SSC, move is changed to
SHARE

0

2

4

6

8

10

12

14

8 16 32 64 128

IO
P

S
 (

x
1

0
0

0
)

Fsync Interval

SC

SSC

Case Study 2: LFS

• Performance (FIO)

– The number of total moved pages is similar to that of SC

– But, SSC shows better performance than default SC

27

39% faster than SC

0

100

200

300

400

500

600

700

8 16 32 64 128

#
 o

f
 P

ag
es

 M
o

v
ed

 (
x

1
0

0
0

)

Fsync Interval

SC

SSC

[The number of total moved pages] [Performance]

In SSC, move is changed to
SHARE

Case Study 3: Application

• Some applications (e.g., databases and key-value stores) have
their own consistency mechanisms even with Ext4 DJ mode

– Double write buffer in MySQL

• In DJ mode, the transaction of file system may break the
atomicity of the database application

28

Database atomicity unit

FS atomic unit FS atomic unit FS atomic unit

Time

Time

Commit Commit

Case Study 3: Application

• Some applications (e.g., databases and key-value stores) have
their own consistency mechanisms even with Ext4 DJ mode

– Double write buffer in MySQL

• In DJ mode, the transaction of file system may break the
atomicity of the database application

29

Database atomicity unit

FS atomic unit FS atomic unit FS atomic unit

Time

Time

Power failure

Commit Commit

Database atomicity unit

One transaction was partially stored
(Atomicity failure)

Case Study 3: Application

• The ACID semantics of database transactions can
be successfully guaranteed via SHARE

– SHARE-aware application-level data journaling (SADJ) mode

• It utilizes the failure-atomic update APIs [EUROSYS’13]

– O_ATOMIC flag, failure-atomic msync(), and syncv() interface

30

Database atomicity unit

FS atomic unit FS atomic unit

Time

Time

Commit CommitO_ATOMIC Fsync()

FS atomic unit

Database data flush

Case Study 3: Application

• Performance (MySQL/InnoDB)

– DWB-OFF/SADJ outperforms the DWB-ON/OJ by 6.16 times
and the DWB-OFF/DJ by 2.73 times

– DWB-OFF/SADJ invokes 16.4x less disk cache FLUSH operations

31

1.0

2.2

5.1

6.0

0.3

0.8

1.8
1.7

 -

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

 2.0

 -

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

O
p

er
a

ti
o

n
s

P
er

 S
ec

o
n

d
 (

x
1

0
0

0
) LinkBench

SysBench

[Performance]

Case Study 3: Application

• Performance (MySQL/InnoDB)

– DWB-OFF/SADJ outperforms the DWB-ON/OJ by 6.16 times
and the DWB-OFF/DJ by 2.73 times

– DWB-OFF/SADJ invokes 16.4x less disk cache FLUSH operations

32

1.0

2.2

5.1

6.0

0.3

0.8

1.8
1.7

 -

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

 2.0

 -

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

O
p

er
a

ti
o

n
s

P
er

 S
ec

o
n

d
 (

x
1

0
0

0
) LinkBench

SysBench

38
36

19
17

25

29

12
14

 -

 5.0

 10.0

 15.0

 20.0

 25.0

 30.0

 35.0

 -

 5.0

 10.0

 15.0

 20.0

 25.0

 30.0

 35.0

 40.0

 45.0

W
ri

te
 A

m
o

u
n

t
(G

B
)

LinkBench

SysBench

[Performance] [Write amount]

Case Study 3: Application

• Performance (MySQL/InnoDB)

– DWB-OFF/SADJ outperforms the DWB-ON/OJ by 6.16 times
and the DWB-OFF/DJ by 2.73 times

– DWB-OFF/SADJ invokes 16.4x less disk cache FLUSH operations

33

1.0

2.2

5.1

6.0

0.3

0.8

1.8
1.7

 -

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

 2.0

 -

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

O
p

er
a

ti
o

n
s

P
er

 S
ec

o
n

d
 (

x
1

0
0

0
) LinkBench

SysBench

38
36

19
17

25

29

12
14

 -

 5.0

 10.0

 15.0

 20.0

 25.0

 30.0

 35.0

 -

 5.0

 10.0

 15.0

 20.0

 25.0

 30.0

 35.0

 40.0

 45.0

W
ri

te
 A

m
o

u
n

t
(G

B
)

LinkBench

SysBench

212

16
10

13

95.8

10.3 9.6
12.0

 -

 20.0

 40.0

 60.0

 80.0

 100.0

 120.0

 -

 50.0

 100.0

 150.0

 200.0

 250.0

#
 o

f
D

is
k

 C
a

ch
e

F
lu

sh
es

 (
x
1

0
0

0
) LinkBench

SysBench

[Performance] [Write amount] [# of Disk cash flush]

Outline

• Background

• Related work

• Case studies

• Implementation & Challenges

• Conclusion

34

Implementation & Challenges

• Implementation

– Linux kernel 4.6.7

– Quad-core processor (Intel i7-6700) and 8GB memory

– SHARE interface

• SHARE-enabled SSD by modifying an FTL firmware of a commercial
high-end PCIeM.2 SSD

• SHARE command has been added as a vendor unique command

• Challenges

– the small-size journal area (i.e., 128 MB)

35

Outline

• Background

• Related work

• Case studies

• Implementation & Challenges

• Conclusion

36

Conclusion

• Tackled a problem in current consistency mechanisms

– Double write overhead

– Segment cleaning overhead

• Presented a comprehensive study with the address
remapping technique

• Feature work

– CoW-based B-tree file systems need to be explored

37

Thank you!

Questions?

38

