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Flash storage landscape
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Noisy neighbors

C. Petersen and A. Huffman, “Solving Latency Challenges with NVM Express SSDs at Scale”, 

Flash memory summit  2017, 
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Unified sharing of resources (free-for-all)

Blue tenant : large capacity; infrequent access
Red tenant : Write-intensive
Green tenant : QoS-sensitive
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Partitioning of resources (egalitarian)

Under-utilized parallelism High GC overhead

Lack of read parallelism

flash chip 0 flash chip 1 flash chip 2 flash chip 3

flash chip 4 flash chip 5 flash chip 6 flash chip 7

Blue tenant : large capacity; infrequent access
Red tenant : Write-intensive
Green tenant : QoS-sensitive
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Slashing parallelism for isolation
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Dynamic allocation of resources (utilitarian)

Reduced GC overhead

Altruistic sharing of parallelism High-degree of read parallelism

flash chip 0 flash chip 1 flash chip 2 flash chip 3

flash chip 4 flash chip 5 flash chip 6 flash chip 7

Blue tenant : large capacity; infrequent access
Red tenant : Write-intensive
Green tenant : QoS-sensitive
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Utilitarian performance isolation

 Lessons from storage arrays

 Monitor each tenant’s fair share of I/O

 Determine optimal data placement 

• To balance the load across multiple storage devices…

• … while considering data relocation overheads

 Key insight

 Flash memory’s challenges  Flash memory’s opportunities

• Need to maintain mapping  Easy to balance load

• Need to garbage collect  Easy to relocate data

 The utilitarian approach

 Compute tenant’s utility (measure of received service)

 Determine the allocation set (a set of chips for writing data) for each tenant

• Allocation sets are mutually exclusive and collectively exhaustive

 Allow data relocation among sets if needed
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Utility of tenants
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flash chip 0 flash chip 1 flash chip 2 flash chip 3

flash chip 4 flash chip 5 flash chip 6 flash chip 7

Blue tenant’s utility : 0.9
Red tenant’s utility : 0.7
Green tenant’s utility : 0.8
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Load balancing
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flash chip 0 flash chip 1 flash chip 2 flash chip 3

flash chip 4 flash chip 5 flash chip 6 flash chip 7

Red tenant’s writes are striped across a larger 
set of flash memory chips.
Blue’s performance loss is minor.
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Data relocation
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flash chip 0 flash chip 1 flash chip 2 flash chip 3

flash chip 4 flash chip 5 flash chip 6 flash chip 7

Garbage collection in chip 1 isolates some of 
Blue tenant’s data by relocating them to its set.
Red tenant’s GC efficiency improves. 
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Utility function

 Utility

 Utility of a tenant is high when its reads experience less traffic

 Traffic

 Traffic of a chip indicates the overall busyness of the chip
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Set allocation & data relocation

 Set allocation

 Objective

• Find allocation set that minimizes max-min ratio of utility across all tenants

 Approximation

• Transfer one chip from max utility tenant to min utility tenant

• Avoid thrashing by transferring only if it balances the utility

• Select a chip that experienced least number of reads

 Data relocation

 Considering the number of reads of a “foreign” block during garbage collection

• “Foreign” blocks that high number of reads are incentivized to relocate to its own set

• Infrequently accessed cold data may remain in another set
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Evaluation environment & methodology

 Storage system configuration

 150GB storage with 28% over-provisioning

• 3 channels x 4 chips/chan

 Garbage collection: reclaims space for writes + considers “foreign” block reads

 Workload configuration

 3 real-world I/O traces collected from MS production servers

• DAS-AS: lowest throughput, highest read-to-write ratio 

• DTRS: relatively random workload with bursts of writes 

• LM-TBE: large sequential reads and writes
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Average performance

Partitioned : dedicates channel to each tenant
Unified : shares all resources among tenants
UPI : dynamically allocates based on utility
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QoS performance

Partitioned : dedicates channel to each tenant
Unified : shares all resources among tenants
UPI : dynamically allocates based on utility
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Microscopic view
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Conclusion

 Dynamic allocation of resources based on utility

 Decouple parallelism, isolation, and capacity

 Balancing the load by distributing write traffic

 Relocate data through existing SSD management mechanisms
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Utilitarian Performance Isolation

reduces average response time

by 16.1% for high-throughput workload

reduces 99% QoS

by 38.5% for latency-critical workload


