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Flash storage landscape
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Noisy neighbors

C. Petersen and A. Huffman, “Solving Latency Challenges with NVM Express SSDs at Scale”, 

Flash memory summit  2017, 
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Unified sharing of resources (free-for-all)

Blue tenant : large capacity; infrequent access
Red tenant : Write-intensive
Green tenant : QoS-sensitive
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Partitioning of resources (egalitarian)

Under-utilized parallelism High GC overhead

Lack of read parallelism

flash chip 0 flash chip 1 flash chip 2 flash chip 3

flash chip 4 flash chip 5 flash chip 6 flash chip 7

Blue tenant : large capacity; infrequent access
Red tenant : Write-intensive
Green tenant : QoS-sensitive
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Slashing parallelism for isolation
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Dynamic allocation of resources (utilitarian)

Reduced GC overhead

Altruistic sharing of parallelism High-degree of read parallelism

flash chip 0 flash chip 1 flash chip 2 flash chip 3

flash chip 4 flash chip 5 flash chip 6 flash chip 7

Blue tenant : large capacity; infrequent access
Red tenant : Write-intensive
Green tenant : QoS-sensitive
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Utilitarian performance isolation

 Lessons from storage arrays

 Monitor each tenant’s fair share of I/O

 Determine optimal data placement 

• To balance the load across multiple storage devices…

• … while considering data relocation overheads

 Key insight

 Flash memory’s challenges  Flash memory’s opportunities

• Need to maintain mapping  Easy to balance load

• Need to garbage collect  Easy to relocate data

 The utilitarian approach

 Compute tenant’s utility (measure of received service)

 Determine the allocation set (a set of chips for writing data) for each tenant

• Allocation sets are mutually exclusive and collectively exhaustive

 Allow data relocation among sets if needed
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Utility of tenants
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flash chip 0 flash chip 1 flash chip 2 flash chip 3

flash chip 4 flash chip 5 flash chip 6 flash chip 7

Blue tenant’s utility : 0.9
Red tenant’s utility : 0.7
Green tenant’s utility : 0.8
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Load balancing
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flash chip 0 flash chip 1 flash chip 2 flash chip 3

flash chip 4 flash chip 5 flash chip 6 flash chip 7

Red tenant’s writes are striped across a larger 
set of flash memory chips.
Blue’s performance loss is minor.
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Data relocation
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flash chip 0 flash chip 1 flash chip 2 flash chip 3

flash chip 4 flash chip 5 flash chip 6 flash chip 7

Garbage collection in chip 1 isolates some of 
Blue tenant’s data by relocating them to its set.
Red tenant’s GC efficiency improves. 
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Utility function

 Utility

 Utility of a tenant is high when its reads experience less traffic

 Traffic

 Traffic of a chip indicates the overall busyness of the chip
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Set allocation & data relocation

 Set allocation

 Objective

• Find allocation set that minimizes max-min ratio of utility across all tenants

 Approximation

• Transfer one chip from max utility tenant to min utility tenant

• Avoid thrashing by transferring only if it balances the utility

• Select a chip that experienced least number of reads

 Data relocation

 Considering the number of reads of a “foreign” block during garbage collection

• “Foreign” blocks that high number of reads are incentivized to relocate to its own set

• Infrequently accessed cold data may remain in another set
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Evaluation environment & methodology

 Storage system configuration

 150GB storage with 28% over-provisioning

• 3 channels x 4 chips/chan

 Garbage collection: reclaims space for writes + considers “foreign” block reads

 Workload configuration

 3 real-world I/O traces collected from MS production servers

• DAS-AS: lowest throughput, highest read-to-write ratio 

• DTRS: relatively random workload with bursts of writes 

• LM-TBE: large sequential reads and writes
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Average performance

Partitioned : dedicates channel to each tenant
Unified : shares all resources among tenants
UPI : dynamically allocates based on utility
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QoS performance

Partitioned : dedicates channel to each tenant
Unified : shares all resources among tenants
UPI : dynamically allocates based on utility
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Microscopic view
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Conclusion

 Dynamic allocation of resources based on utility

 Decouple parallelism, isolation, and capacity

 Balancing the load by distributing write traffic

 Relocate data through existing SSD management mechanisms
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Utilitarian Performance Isolation

reduces average response time

by 16.1% for high-throughput workload

reduces 99% QoS

by 38.5% for latency-critical workload


