Respecting the block interface -
computational storage using virtual objects
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A brief history of computational storage
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Simple concept with a long history

— Move the compute to the data

— Associative memory, database machines, active disks, key-value HDD...
Why didn’t it gain widespread adoption?

— Short version: wasn’t quite worth it... until now
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What's changed?

Fast server

Very high density, high-performance storage is here

— 16-32 TB drives are here, 100+TB SSDs are coming
* 1PBina1lU server

— All this behind NICs, /0 controllers, devices, etc.
Large scale disaggregated block storage is here (nvmeor)
— Enables “diskless” storage stacks
— Greater flexibility, but yet more 1/0 traffic
Devices and targets are more powerful

— More flexibility and headroom to work with
» (also, we’re Intel and like hardware ©)

READ block
WRITE block
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Moving compute into storage

(to avoid an 1/0 bottleneck)




Moving compute into storage

Step 1. Teach the storage about data objects

— Files, objects, DB records, key-value pairs, ...
Step 2. Provide a way to program storage (API)
Step 3. Implement compute methods in storage
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Object or file-based storage makes this process straightforward

— E.g., search, compress, checksum, resize, ...

BUT, storage is fundamentally *still* built on blocks!
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Challenge 1:
Moving compute into storage

N
block




Object Awareness

Recall Step 1: Teach storage about objects
— Constraint: we need to talk block storage

Prior experience makes us leery of changing low-level
storage interfaces
— E.g., uphill battle for KV drives

Can we make block storage object aware without...
— Changing the interface
— Adding a lot of state and complexity

We need to consider
Sector 42

— Host and target data consistency, input vs output, non- Secioria “world!”
sector aligned data, transport considerations “Hello.”
(bidirectional transfers), chained operations,
permissions...
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Introducing virtual objects (step 1 of 3)

VIRTUAL OBI:
“ . FIEMAP + :> EXT 1: LBA 2008 LEN 4096
/home/user/foo.txt :> Stat EXT 2: LBA 4104 LEN 123

TOTAL_LEN: 4219

Virtual object:

— An ephemeral mapping of blocks to make block storage object aware
* Don’t have to turn block storage into object storage

» Stateless: mapping is only valid for duration of an operation
* Can be used for both input and output

— Complementary to existing stacks built on block storage
* Object, KV store, file, etc.

This is step 1: teach the block storage about objects
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Programmability (step 2 of 3)

Compute Descriptor

VIRTUAL_OBI:

EXT 1: LBA 2008 LEN 4096
EXT 2: LBA 4104 LEN 123
TOTAL_LEN: 4219

OPCODE: “search” ARG: “baz”

Virtual objects are embedded in compute descriptors

— Add arguments and operations for computing inside block storage
— Can have multiple input and output virtual objects

Descriptors are block-protocol compatible!
— For SCSI and NVME, works as a vendor specific EXEC command
— Small results can be returned as a payload, larger results written to output objects

This is step 2: provides a way to program storage
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Implementing offloads (step 3of 3)

Host Target

OAS Library < > Offload Engine

Storage Transport
(SCSI or NVMe)

Object Aware Storage (OAS) Library handles host/app interactions
— Cache consistency
— Creating and allocating virtual objects
— Building and transporting compute descriptors
Offload Engine: interprets EXEC command an descriptors
— Implement our methods like checksum, search, etc.

This is step 3: provides a way to implement operations
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Virtual object creation,
request issuing, cache

Prototype Architecture + Flow
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Evaluation




Experimental setup

2 servers connected via 40 GbE

— Target and Host: Dual Xeon Gold 6140s, Dual Xeon E5-2699 v3s
* Runs NVMeoF stack, handles offloads

— 8 P4600 NVMe SSDs (~3 GB/s per drive)

— Benchmark:

* OASBench (in-house benchmarking utility)
* 100 16 MB files per SSD, 48 worker threads

Focused on checksum offload

— “Bitrot” detection for object storage
— Modern hashes are I/O bound

Host
(OASBench)
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Experiment 1: Conventional Access

Read

Host 40 GbE NVMeoF

(OASBench)

Checksum

Data

Read file/object data from target to host, and compute checksum
— Expect to be bottlenecked by the 40 GbE link
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Conventional operations
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Conventional operations: data is pulled to the host before computation
— Quickly bottlenecked by 40 GbE network
— <2 SSDs worth of throughput
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Experiment 2: Offloaded Access

EXEC
Host 40 GbE NVMeoF
(OASBench)
\ / Checksum
Checksum
Digest

Issue EXEC command with virtual objects
— Target computes checksum in-situ and returns digest
— Network bottlenecks should go away
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Offloaded operations
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Offloaded operations are run in the storage target

— Bypasses the 40 GbE bottleneck and scales with the number of SSDs being hit

— 40 GbE link bypass even what could be provided from 100 GbE!
* No longer transport bound!

—  >99% reduction in network traffic, along with up to 3x speedups (Not shown)

* Implemented in Ceph, Swift and MinlO
Intel Labs 17 'intel'



Challenge 2:
Handling Distributed, Striped Data




Computational Storage and EC

Trends in Data Striping

— Erasure coded (EC) deployments have
exploded beyond traditional RAID

* RAID chunks in low bytes to KiB ranges

— Very difficult to offload computations s m E E

 EC chunks in hundreds of KiB to low MiB
— Individual elements easily found =% [ E5 {815 HE

— Large volumes of data have well
defined structure and elements
* E.g., CSVs, JSONs, dense matrices, etc.
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Our Solution

Match: 0-2 No Match Partial: 32 “t” Partial: 33-34 “he”

Results:
Match: 0-2
Match: 32-34

Our solution is to leverage data structure and large stripe pieces
— Most work still done inside target
— Ambiguous “border” elements returned as “residuals” handled host-side
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Ongoing and Future Work

Lots of other offloads (not enough time to cover)

— Image preprocessing for ML pipelines
e >90% data movement reduction

— Merge, Sort, Search, LSM Compaction, CSV queries,
microclassifiers...

We’'re not just for fabrics targets

— Methodology is compatible with devices as well

Industry involvement and engagement
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Wrapping it Up!

Introduced virtual objects for computational block storage
—  Prototypes in iSCSI and NVMeoF with a variety of offloads

Showed that handling distributed, striped data can be
straightforward with large EC shards and (semi) structured data

We want collaborators!
— Working on open sourcing

Stay tuned for more updates from Intel ©
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Thanks for your attention!
Questions? Comments?

ian.f.adams@intel.com

john.keys@intel.com

michael.mesnier@intel.com
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Extras/Backups




Applications are easy to adapt and enable

Application integration isn’t
difficult

— Example with our Golang
bindings using iSCSI
Client library is small
— (<500 LOC)

New offloads are
straightforward

— Currently a combination of C
libraries and kernel modules

— Currently porting to full
userspace implementations

/*path to talk to the scsi device*/
sgpath := "/dev/bsg/20:0:0:0"

/*Target file for operating on*/
fpath := “/mnt/oas dev/test.txt"

/*Create the OAS Context*/
ctx := oas client.OasCtx{sgpath}

/*Call MD5 method*/
cas mdS resp := ctx.MD5 (fpath)
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