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A brief  history of computational storage
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Simple concept with a long history
– Move the compute to the data

– Associative memory, database machines, active disks, key-value HDD…

Why didn’t it gain widespread adoption?
– Short version: wasn’t quite worth it… until now
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What’s changed?

Very high density, high-performance storage is here
– 16-32 TB drives are here, 100+TB SSDs are coming

• 1PB in a 1U server

– All this behind NICs, I/O controllers, devices, etc.

•Large scale disaggregated block storage is here (NVMeoF)

– Enables “diskless” storage stacks
– Greater flexibility, but yet more I/O traffic

•Devices and targets are more powerful
– More flexibility and headroom to work with

• (also, we’re Intel and like hardware )
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Moving compute into storage

(to avoid an I/O bottleneck)
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Moving compute into storage

•Step 1. Teach the storage about data objects

– Files, objects, DB records, key-value pairs, …

•Step 2. Provide a way to program storage (API)

•Step 3. Implement compute methods in storage 

– E.g., search, compress, checksum, resize, …
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Object or file-based storage makes this process straightforward

BUT,  storage is fundamentally *still* built on blocks! 



Challenge 1: 
Moving compute into storage
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Object Awareness

Recall Step 1: Teach storage about objects
– Constraint: we need to talk block storage

Prior experience makes us leery of changing low-level 
storage interfaces

– E.g., uphill battle for KV drives

Can we make block storage object aware without…
– Changing the interface
– Adding a lot of state and complexity

We need to consider
– Host and target data consistency, input vs output,  non-

sector aligned data, transport considerations 
(bidirectional transfers), chained operations, 
permissions…
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Server

foo.txt
“Hello, world!”

Sector 13
“Hello,”

Sector 42
“world!”

File system
(foo.,txt 13 + 42)



Introducing virtual objects (step 1 of 3)

•Virtual object: 
– An ephemeral mapping of blocks to make block storage object aware

• Don’t have to turn block storage into object storage
• Stateless: mapping is only valid for duration of an operation
• Can be used for both input and output

– Complementary to existing stacks built on block storage
• Object, KV store, file, etc. 
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VIRTUAL_OBJ:
EXT 1: LBA 2008 LEN 4096
EXT 2: LBA 4104 LEN 123
TOTAL_LEN: 4219

FIEMAP + 
Stat“/home/user/foo.txt”

This is step 1: teach the block storage about objects



Programmability (step 2 of 3)

•Virtual objects are embedded in compute descriptors
– Add arguments and operations for computing inside block storage 
– Can have multiple input and output virtual objects

•Descriptors are block-protocol compatible!
– For SCSI and NVME, works as a vendor specific EXEC command 
– Small results can be returned as a payload, larger results written to output objects
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VIRTUAL_OBJ:
EXT 1: LBA 2008 LEN 4096
EXT 2: LBA 4104 LEN 123
TOTAL_LEN: 4219

OPCODE: “search” ARG: “baz”

Compute Descriptor

This is step 2: provides a way to program storage



Implementing offloads (step 3of 3)

•Object Aware Storage (OAS) Library handles host/app interactions 
– Cache consistency
– Creating and allocating virtual objects
– Building and transporting compute descriptors

•Offload Engine: interprets EXEC command an descriptors
– Implement our methods like checksum, search, etc.
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OAS Library Offload Engine

Storage Transport
(SCSI or NVMe)

Host Target

This is step 3: provides a way to implement operations



Prototype Architecture + Flow

•Built using iSCSI and NVMeoF initiators and targets
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Evaluation
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Experimental setup 

•2 servers connected via 40 GbE
– Target and Host: Dual Xeon Gold 6140s, Dual Xeon E5-2699 v3s

• Runs NVMeoF stack, handles offloads

– 8 P4600 NVMe SSDs (~3 GB/s per drive)
– Benchmark:

• OASBench (in-house benchmarking utility)
• 100 16 MB files per SSD, 48 worker threads

•Focused on checksum offload
– “Bitrot” detection for object storage
– Modern hashes are I/O bound
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Host 
(OASBench)

Target40 GbE NVMeoF



Experiment 1: Conventional Access

•Read file/object data from target to host, and compute checksum
– Expect to be bottlenecked by the 40 GbE link
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Conventional operations

•Conventional operations: data is pulled to the host before computation
– Quickly bottlenecked by 40 GbE network
– <2 SSDs worth of throughput
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Experiment 2: Offloaded Access

•Issue EXEC command with virtual objects
– Target computes checksum in-situ and returns digest
– Network bottlenecks should go away
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Offloaded operations

•Offloaded operations are run in the storage target
– Bypasses the 40 GbE bottleneck and scales with the number of SSDs being hit
– 40 GbE link bypass even what could be provided from 100 GbE!

• No longer transport bound!

– >99% reduction in network traffic, along with up to 3x speedups (Not shown)
• Implemented in Ceph, Swift and MinIO
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Challenge 2: 
Handling Distributed, Striped Data



Computational Storage and EC

Trends in Data Striping

– Erasure coded (EC) deployments have 
exploded beyond traditional RAID
• RAID chunks in low bytes to KiB ranges

– Very difficult to offload computations

• EC chunks in hundreds of KiB to low MiB

– Individual elements easily found

– Large volumes of data have well 
defined structure and elements
• E.g., CSVs, JSONs, dense matrices, etc.
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Our Solution

•Our solution is to leverage data structure and large stripe pieces
– Most work still done inside target
– Ambiguous “border” elements returned as “residuals” handled host-side
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The quick brown fox jumped over the lazy dog

Match: 0-2 No Match Partial: 32 “t” Partial: 33-34 “he”

“the”==“the”
Match! 

Results:
Match: 0-2

Match: 32-34



Ongoing and Future Work

•Lots of other offloads (not enough time to cover)

– Image preprocessing for ML pipelines 
• >90% data movement reduction

– Merge, Sort, Search, LSM Compaction, CSV queries, 
microclassifiers…

•We’re not just for fabrics targets

– Methodology is compatible with devices as well

•Industry involvement and engagement 
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Wrapping it Up!

• Introduced virtual objects for computational block storage
– Prototypes in iSCSI and NVMeoF with a variety of offloads

• Showed that handling distributed, striped data can be 
straightforward with large EC shards and (semi) structured data

• We want collaborators!
– Working on open sourcing

• Stay tuned for more updates from Intel 
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•Thanks for your attention!

•Questions? Comments?
•ian.f.adams@intel.com

•john.keys@intel.com

•michael.mesnier@intel.com
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•Extras/Backups
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Applications are easy to adapt and enable

Application integration isn’t 
difficult

– Example with our Golang
bindings using iSCSI

Client library is small 
– (< 500 LOC)

New offloads are 
straightforward 

– Currently a combination of C 
libraries and kernel modules

– Currently porting to full 
userspace implementations
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/*path to talk to the scsi device*/

sgpath := "/dev/bsg/20:0:0:0"

/*Target file for operating on*/

fpath := “/mnt/oas_dev/test.txt"

/*Create the OAS Context*/

ctx := oas_client.OasCtx{sgpath}

/*Call MD5  method*/

oas_md5_resp := ctx.MD5(fpath)


