
A Tale of Two Abstractions
The Case for Object Space

Daniel Bittman Peter Alvaro Darrell D. E. Long Ethan L. Miller

HotStorage ‘19
2019-07-08

UC Santa Cruz

1

Hardware Trends

Byte-addressable Non-volatile Memory
(actual implementations may vary)

Multiplicity of Computing Devices and
Heterogeneous Memory

ARM

2

Hardware’s Needs vs. Software’s Needs

Consideration Hardware Software

Latency

In-memory Data Structures
Data Lifetime and Persistent Data

References
Memory Heterogeneity and Data

Movement

3

Hardware’s Needs vs. Software’s Needs

Consideration Hardware Software

Latency ✓ ✓
In-memory Data Structures

Data Lifetime and Persistent Data
References

Memory Heterogeneity and Data
Movement

4

Hardware’s Needs vs. Software’s Needs

Consideration Hardware Software

Latency ✓ ✓
In-memory Data Structures ✓

Data Lifetime and Persistent Data
References

Memory Heterogeneity and Data
Movement

Serialization Cost +
Two different data

representations

5

Hardware’s Needs vs. Software’s Needs

Consideration Hardware Software

Latency ✓ ✓
In-memory Data Structures X ✓

Data Lifetime and Persistent Data
References

Memory Heterogeneity and Data
Movement

6

Hardware’s Needs vs. Software’s Needs

Consideration Hardware Software

Latency ✓ ✓
In-memory Data Structures X ✓

Data Lifetime and Persistent Data
References X ✓

Memory Heterogeneity and Data
Movement

New challenges

7

Hardware’s Needs vs. Software’s Needs

Consideration Hardware Software

Latency ✓ ✓
In-memory Data Structures X ✓

Data Lifetime and Persistent Data
References X ✓

Memory Heterogeneity and Data
Movement ✓

8

Heterogeneity and Autonomy

NIC FPGA

Access data
A

Access data
A

DRAM BNVM

9

Data Movement

NIC FPGA

Access data
A

Move data
A

DRAM BNVM

10

Hardware’s Needs vs. Software’s Needs

Consideration Hardware Software

Latency ✓ ✓
In-memory Data Structures X ✓

Data Lifetime and Persistent Data
References X ✓

Memory Heterogeneity and Data
Movement ✓ X

11

In short...

Software cares about
long-lived data relationships,

even across program runs.

Hardware must provide
consistent data access, even

if it moves in memory.

12

Virtual memory is the wrong abstraction. Virtual memory is fine.

Software is easier to change than hardware

Two Abstractions

Global Object Space

Provides long-term data references
(persistent pointers)

Logical Object Space

Abstracts physical location from hardware
to enable correct access to objects

Object-logical
address

Physical
address

MappingObject-global
address

Translation

Common ground: organize data into objects.

13

Global Object Space: Abstract References

Persistent data should be operated on directly and like memory

A B

C AB

Process 1

Process 2 A B

Pointers may be cross-object: referring to data within a different object

object-id offset

14

Global Object Space: Abstract References

FOT entry offset

64-bits

FOT Data

Object Layout

object ID or Name Name Resolver flags

Foreign Object Table

object ID or Name Name Resolver flags

1

2
...

15

Global Object Space: Abstract References

1 <offset>

1 A rw-

2 B r--

O

FOT

A

FOT entry of >0 means “cross-object”—points to a different object.

16

Logical Object Space: Abstract Location

Object A Object B

Object AObject B

Object C

X

Object
Global
Space

Object
Logical
Space

Physical
Memory

DRAM BNVM

Software sees global
space of ALL objects.

Hardware sees logical
space of currently
accessible, active objects

17

...

Implications for Operating Systems

Operating
systems

Operating
systems

Greatly simplified mapping management

The kernel is “out of the way”

18

Implications for Operating Systems

Object A Object B

Object A
rw-

Object B
r--

Object C

X

Object
Global
Space

Object
Logical
Space

Physical
Memory

DRAM BNVM

Security Contexts!

19

...

Implementation Details

Virtual
Address

Object-logical
address

Physical
address

MMU EPT / IOMMUObject-global
address

ptr_lea

EPT Drawbacks
● Longer page walking
● Additional switching

Optimizations
● vmfunc enables faster EPT switching
● Virtualization exceptions allow guest to

handle EPT violations

20

Where do we go from here?

We’re building a new OS, Twizzler, around BNVM and heterogeneous memory.

Initial results show negligible impact from using VT-x hardware, and a very small
overhead on translating persistent pointers.

We plan to explore implications for distributed computing, distributed memory
and storage, and resumability under power cycles.

21

Remember: Different Needs

Consideration Hardware Software

Latency ✓ ✓
In-memory Data Structures X ✓

Data Lifetime and Persistent Data
References X ✓

Memory Heterogeneity and Data
Movement ✓ X

22

Remember: Two Abstractions

Global Object Space

Provides long-term data references
(persistent pointers)

Logical Object Space

Abstracts physical location from hardware
to enable correct access to objects

Object-logical
address

Physical
address

MappingObject-global
address

Translation

Common ground: organize data into objects.

23

Remember: Implications

24

Software should operate on in-memory data structures.

Hardware should have abstracted view of memory.

We’re building Twizzler to explore the implications.

Thank You!

Questions / Discussion

Daniel Bittman
dbittman@ucsc.edu

@danielbittman

Peter Alvaro
palvaro@ucsc.edu

Darrell D. E. Long
darrell@ucsc.edu

Ethan L. Miller
elm@ucsc.edu

25

Implementation of Global Space

O

FOT

A

Address Space: 264 (248 on x86_64)

? ?

Mapping should be transparent to application.

The virtual address space abstraction does not fit with the object:offset model

LibOS handles address space management

26

Implementation of Global Object Space

O A

O’s FOT
1 → A

int *tmp0 = lea(O, ptr0);

int *tmp1 = lea(O, ptr1);

x = *tmp1; y = *tmp0;

0 <off>
ptr0

1 <off>
ptr1

T *lea(object, T *)
Convert a persistent pointer into a virtual address

27

