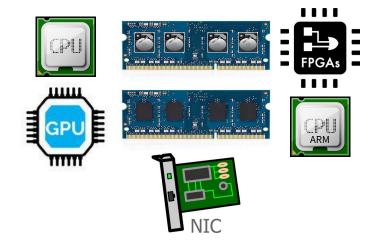
A Tale of Two Abstractions The Case for Object Space

Daniel Bittman

Peter Alvaro

Darrell D. E. Long

Ethan L. Miller


UC Santa Cruz

HotStorage '19 2019-07-08

Hardware Trends

Byte-addressable Non-volatile Memory (actual implementations may vary)

Multiplicity of Computing Devices and Heterogeneous Memory

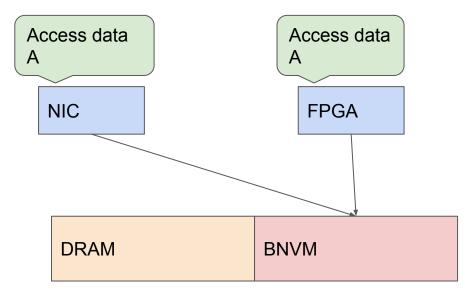
Consideration	Hardware	Software
Latency		
In-memory Data Structures		
Data Lifetime and Persistent Data References		
Memory Heterogeneity and Data Movement		

Consideration	Hardware	Software
Latency	\checkmark	\checkmark
In-memory Data Structures		
Data Lifetime and Persistent Data References		
Memory Heterogeneity and Data Movement		

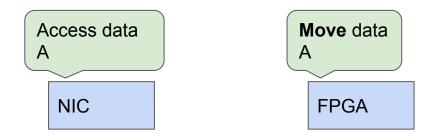
Consideration	Hardware	Software
Latency	\checkmark	\checkmark
In-memory Data Structures		\checkmark
Data Lifetime and Persistent Data References		
Memory Heterogeneity and Data Movement		

Serialization Cost + Two different data representations

Consideration	Hardware	Software
Latency	\checkmark	\checkmark
In-memory Data Structures	X	\checkmark
Data Lifetime and Persistent Data References		
Memory Heterogeneity and Data Movement		


	Consideration	Hardware	Software
	Latency	\checkmark	\checkmark
New challenges	In-memory Data Structures	X	\checkmark
	Data Lifetime and Persistent Data References	X	\checkmark
	Memory Heterogeneity and Data Movement		

Consideration	Hardware	Software
Latency	\checkmark	\checkmark
In-memory Data Structures	X	\checkmark
Data Lifetime and Persistent Data References	X	\checkmark
Memory Heterogeneity and Data Movement	\checkmark	


Heterogeneity and Autonomy

Data Movement

DRAM	BNVM
------	------

Consideration	Hardware	Software
Latency	\checkmark	\checkmark
In-memory Data Structures	X	\checkmark
Data Lifetime and Persistent Data References	X	\checkmark
Memory Heterogeneity and Data Movement	\checkmark	X

In short...

Software cares about **long-lived data relationships**, even across program runs. Hardware must provide consistent data access, even if it moves in memory.

Virtual memory is the **wrong** abstraction.

Virtual memory is fine.

Software is easier to change than hardware

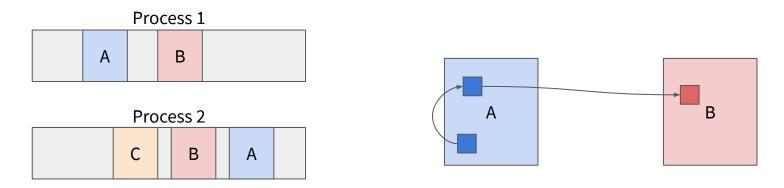
Two Abstractions

Global Object Space

Provides long-term data references (persistent pointers)

Logical Object Space

Abstracts physical location from hardware to enable correct access to objects


Common ground: organize data into objects.

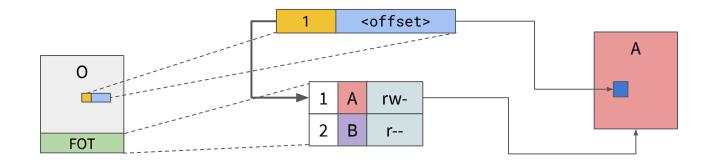
Persistent data should be operated on *directly* and *like memory*

Pointers may be cross-object: referring to data within a different object

object-id	offset
-----------	--------

Global Object Space: Abstract References

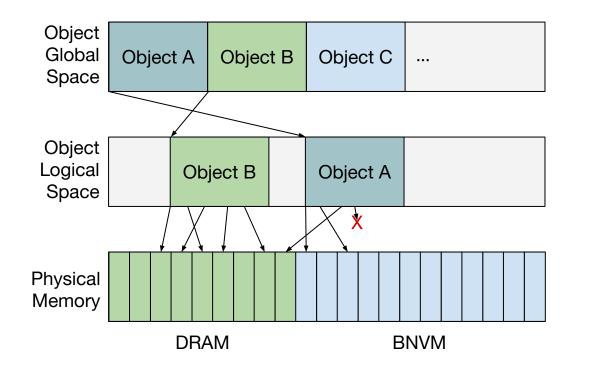
Foreign Object Table


1	object ID or Name	Name Resolver	flags
2	object ID or Name	Name Resolver	flags

Object Layout FOT Data

. . .

Global Object Space: Abstract References



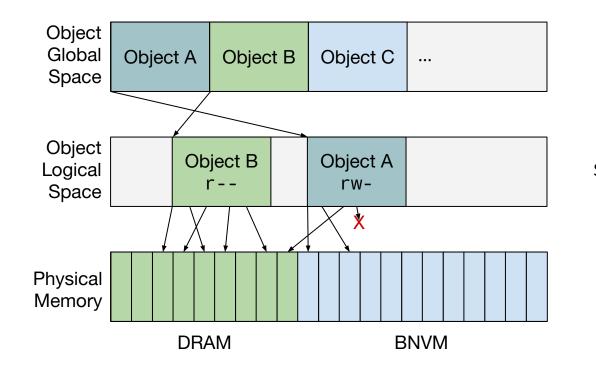
FOT entry of >0 means "cross-object"—points to a different object.

Logical Object Space: Abstract Location

Software sees global space of ALL objects.

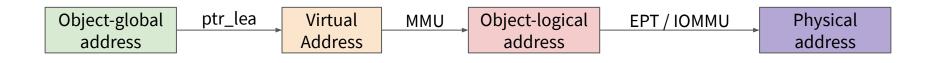
Hardware sees logical space of currently accessible, active objects

Implications for Operating Systems


Greatly simplified mapping management

The kernel is "out of the way"

Implications for Operating Systems



Security Contexts!

Implementation Details

EPT Drawbacks

- Longer page walking
- Additional switching

Optimizations

- vmfunc enables faster EPT switching
- Virtualization exceptions allow guest to handle EPT violations

Where do we go from here?

We're building a new OS, Twizzler, around BNVM and heterogeneous memory.

Initial results show negligible impact from using VT-x hardware, and a very small overhead on translating persistent pointers.

We plan to explore implications for distributed computing, distributed memory and storage, and resumability under power cycles.

Remember: Different Needs

Consideration	Hardware	Software
Latency	\checkmark	\checkmark
In-memory Data Structures	X	\checkmark
Data Lifetime and Persistent Data References	X	\checkmark
Memory Heterogeneity and Data Movement	\checkmark	X

Remember: Two Abstractions

Global Object Space

Provides long-term data references (persistent pointers)

Logical Object Space

Abstracts physical location from hardware to enable correct access to objects

Common ground: organize data into objects.

Software should operate on in-memory data structures.

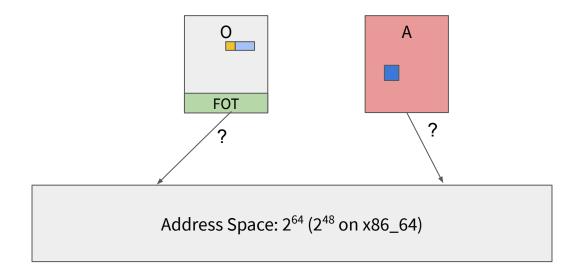
Hardware should have abstracted view of memory.

We're building Twizzler to explore the implications.

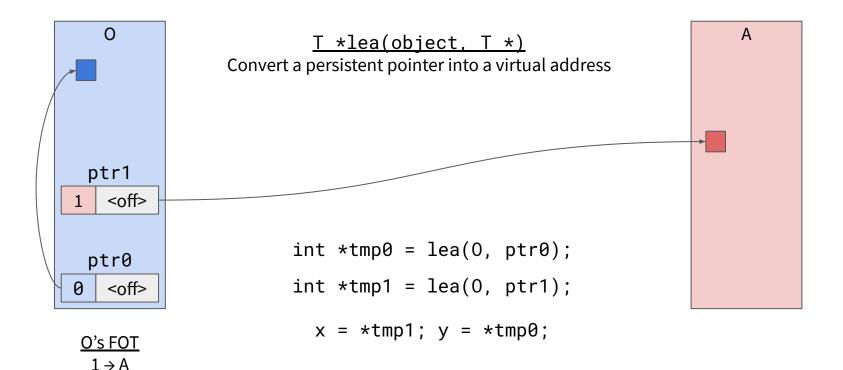
Thank You!

Questions / Discussion

Daniel Bittman dbittman@ucsc.edu @danielbittman Peter Alvaro palvaro@ucsc.edu Darrell D. E. Long darrell@ucsc.edu Ethan L. Miller elm@ucsc.edu


Implementation of Global Space

Mapping should be transparent to application.


The virtual address space abstraction does not fit with the object:offset model

LibOS handles address space management

Implementation of Global Object Space

27