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Hardware Trends

Byte-addressable Non-volatile Memory
(actual implementations may vary)

Multiplicity of Computing Devices and 
Heterogeneous Memory

ARM
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Hardware’s Needs vs. Software’s Needs

Consideration Hardware Software

Latency

In-memory Data Structures  
Data Lifetime and Persistent Data 

References  
Memory Heterogeneity and Data 

Movement  
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Hardware’s Needs vs. Software’s Needs

Consideration Hardware Software

Latency ✓ ✓
In-memory Data Structures ✓

Data Lifetime and Persistent Data 
References  

Memory Heterogeneity and Data 
Movement  

Serialization Cost + 
Two different data

representations
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Hardware’s Needs vs. Software’s Needs

Consideration Hardware Software

Latency ✓ ✓
In-memory Data Structures X ✓

Data Lifetime and Persistent Data 
References  

Memory Heterogeneity and Data 
Movement  
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Hardware’s Needs vs. Software’s Needs

Consideration Hardware Software

Latency ✓ ✓
In-memory Data Structures X ✓

Data Lifetime and Persistent Data 
References X ✓

Memory Heterogeneity and Data 
Movement  

New challenges
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Hardware’s Needs vs. Software’s Needs

Consideration Hardware Software

Latency ✓ ✓
In-memory Data Structures X ✓

Data Lifetime and Persistent Data 
References X ✓

Memory Heterogeneity and Data 
Movement ✓
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Heterogeneity and Autonomy

NIC FPGA

Access data 
A

Access data 
A

DRAM BNVM
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Data Movement

NIC FPGA

Access data 
A

Move data 
A

DRAM BNVM
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Hardware’s Needs vs. Software’s Needs

Consideration Hardware Software

Latency ✓ ✓
In-memory Data Structures X ✓

Data Lifetime and Persistent Data 
References X ✓

Memory Heterogeneity and Data 
Movement ✓ X
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In short...

Software cares about 
long-lived data relationships, 

even across program runs.

Hardware must provide 
consistent data access, even 

if it moves in memory.
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Virtual memory is the wrong abstraction. Virtual memory is fine.

Software is easier to change than hardware 



Two Abstractions

Global Object Space

Provides long-term data references 
(persistent pointers)

Logical Object Space

Abstracts physical location from hardware 
to enable correct access to objects

Object-logical 
address

Physical 
address

MappingObject-global 
address

Translation

Common ground: organize data into objects.
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Global Object Space: Abstract References

Persistent data should be operated on directly and like memory

A B

C AB

Process 1

Process 2 A B

Pointers may be cross-object: referring to data within a different object

object-id offset
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Global Object Space: Abstract References

FOT entry offset

64-bits

FOT Data

Object Layout

object ID or Name Name Resolver flags

Foreign Object Table

object ID or Name Name Resolver flags

1

2
...
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Global Object Space: Abstract References

1 <offset>

1 A rw-

2 B r--

O

FOT

A

FOT entry of >0 means “cross-object”—points to a different object.
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Logical Object Space: Abstract Location

Object A Object B

Object AObject B

Object C

X

Object 
Global 
Space

Object
Logical
Space

Physical
Memory

DRAM BNVM

Software sees global 
space of ALL objects.

Hardware sees logical 
space of currently 
accessible, active objects
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Implications for Operating Systems

Operating 
systems

Operating 
systems

Greatly simplified mapping management

The kernel is “out of the way”
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Implications for Operating Systems

Object A Object B

Object A
rw-

Object B
r--

Object C

X

Object 
Global 
Space

Object
Logical
Space

Physical
Memory

DRAM BNVM

Security Contexts!
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Implementation Details

Virtual 
Address

Object-logical 
address

Physical 
address

MMU EPT / IOMMUObject-global 
address

ptr_lea

EPT Drawbacks
● Longer page walking
● Additional switching

Optimizations
● vmfunc enables faster EPT switching
● Virtualization exceptions allow guest to 

handle EPT violations
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Where do we go from here?

We’re building a new OS, Twizzler,  around BNVM and heterogeneous memory.

Initial results show negligible impact from using VT-x hardware, and a very small 
overhead on translating persistent pointers.

We plan to explore implications for distributed computing, distributed memory 
and storage, and resumability under power cycles.
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Remember: Different Needs

Consideration Hardware Software

Latency ✓ ✓
In-memory Data Structures X ✓

Data Lifetime and Persistent Data 
References X ✓

Memory Heterogeneity and Data 
Movement ✓ X
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Remember: Two Abstractions

Global Object Space

Provides long-term data references 
(persistent pointers)

Logical Object Space

Abstracts physical location from hardware 
to enable correct access to objects

Object-logical 
address

Physical 
address

MappingObject-global 
address

Translation

Common ground: organize data into objects.

23



Remember: Implications
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Software should operate on in-memory data structures.

Hardware should have abstracted view of memory.

We’re building Twizzler to explore the implications.



Thank You!

Questions / Discussion

Daniel Bittman
dbittman@ucsc.edu

@danielbittman

Peter Alvaro
palvaro@ucsc.edu

Darrell D. E. Long
darrell@ucsc.edu

Ethan L. Miller
elm@ucsc.edu
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Implementation of Global Space

O

FOT

A

Address Space: 264 (248 on x86_64)

? ?

Mapping should be transparent to application.

The virtual address space abstraction does not fit with the object:offset model

LibOS handles address space management
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Implementation of Global Object Space

O A

O’s FOT
1 → A

int *tmp0 = lea(O, ptr0);

int *tmp1 = lea(O, ptr1);

x = *tmp1; y = *tmp0;

0 <off>
ptr0

1 <off>
ptr1

T *lea(object, T *)
Convert a persistent pointer into a virtual address
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