
OIL + VCache

Hello! 
I'm Roberto Peon! 

OIL + VCache
thinking about file and I/O abstraction

I'm here to talk to you today about
abstractions, after all, 
"All problems in computer science can be
solved by another level of indirection" er
abstraction!

But First

Let me tell you to story about how I came
to care about abstractions

History

My first job after college was doing real-
time special effects for live sports
television.

This was a very high-stress job. 
Nothing like recompiling your system
during a commercial break of
indeterminate length along with an SLA of
1/30th of a second for hours at a time
with 10s of millions of people getting
upset within a few hundreds of
milliseconds when you mess it up...

While TV had made a big shift to digital,
the bandwidths simply weren't there to
treat video the same as data 
And ya, I had to sit in a truck trailer to get
that done. Again, not enough bandwidth
at the time to do it elsewhere!

Inside the truck, we had to deal with the
video somehow. 
While one could build an array of disks
that could handle the bandwidth, it was
prohibitively expensive to do at any
reasonable scale. 
Disks, thus, were relegated to the still-
important task of dealing with metadata:
Where were the cameras pointed at that
particular time, what was the accelerator-
position of the number-17 car at that time,
etc.

?

So, on what did we store the video?

We used DigiBeta tape. Video, it turns
out, is primarily accessed linearly. 
 At 270Mb/s, it was challenging to move
the video around inside the computers
themselves, as the bus bandwidths of the
computers of the time weren't that much
larger.

I/O 
it matters!

In both the data-at-rest and data-in-flight
ways, the means by which the I/O was
done mattered directly to whether or not
we could meet the SLA. 
(aside: This was stressful given multiple
millions of people saw your mistakes
within 2/3rds of a second, even when
your mistake lasted only 1/30th of sec)

Fast forward, no pun intended, and I've
moved to working at my new job, helping
route HTTP requests to the correct
servers, at "Internet" scale.

Fast forward, no pun intended, and I've
moved to working at my new job, helping
route HTTP requests to the correct
servers, at "Internet" scale.

Proxy

ServerServerServer
ServerServerServer

ClientClientClientClient
Client

Fast forward, no pun intended, and I've
moved to working at my new job, helping
route HTTP requests to the correct
servers, at "Internet" scale.

Proxy

ServerServerServer
ServerServerServer

ClientClientClientClient
Client

HTTP/1.1

HTTP/1.1

The world then was HTTP/1.1 That was
the state of the art.

Proxy

ServerServerServer
ServerServerServer

ClientClientClientClient

HTTP/1.1

HTTP/1.1

Client

:(

After a while it was apparent that there
were issues.

Proxy

ServerServerServer
ServerServerServer

ClientClientClientClient

HTTP/1.1

HTTP/1.1

Client

After a while it was apparent that there
were issues. Serious issues. 

So, what was the problem of HTTP/1.1?

.. and that little animation was
understating the issues.

Requests were coupled
with the connections.

and, as a result, you'd see 60 connections
needed to load a single site. 
If you didn't have many IPs that you could
use when phoning home, and you were
running a CDN, you'd run out of
ephemeral ports! 
That meant you'd HoL block many
people.

There was an
abstraction missing.

To make a long story 
a short story...

The problems we were
experiencing
suggested...

...we needed a new
session-layer
abstraction.

and we weren't the only ones to realize
that there were issues here. There were
other standards/protocols/technologies

Enter 
SPDY

That is why we started work on what
eventually became HTTP2. 

Enter 
HTTP/2

SPDY -> HTTP2 
While I'm not going to talk about that
much more, I will say that we knew that
HTTP2 was going to be a springboard for
further innovation, and we knew it was
imperfect. We moved forward anyway.

Proxy

ServerServerServer
ServerServerServer

ClientClientClientClient
Client

HTTP/2

HTTP/2

HTTP/2 was, in effect a session layer with
the things that were needed to make
multiplexing work well. 
With HTTP/2, we added a session layer,
de-coupling connections and requests. 
Adding the session abstraction enabled
compression, reuse of the TCP state, and
allowed prioritization between requests. 
Because we had multiplexing, the
ephemeral port limit was no longer a big
issue (that became the interplay of packet
loss and HoL blocking on TCP, but that is
another story, and it isn't QUIC... or

Fast forward again.

Now I'm working on internet-
scale video processing,

storage, and serving.

What is "internet-scale" storage? 
If we take public numbers from a major
video-sharing site, and if my arithmetic is
correct (it often isn't), then on the order of
a significant fraction of a Petabyte of
storage ingested/day.

What does internet-scale serving mean? 
It means you can induce significant
packet loss if you mess it up.

Here, in this new world, we're worried
about managing processing from many
different inputs into many different
outputs. 
And while it looks peaceful and simple on
the inside... 

Server

Ingest

Business Logic

Server

Server

In reality, there were many different things
going on inside, as one probably expects
today.

Turns out that there are many different kinds
of video and video playback.

Chatting with mom on the VC 
 

has vastly different requirements than

playing a new (VoD) movie on the TV. 

j/k ... Chatting with my dad on the VC also
has different requirements. 
Even more fun, the audio part has
different requirements than the video part,
and not all of the video parts are the same
either...

So much so that there are different protocols
for VC as compared to VoD playback.

and Live too. Off the top of my head,
some of the popular ones are RTMP,
WebRTC, and there are variants of the
DASH and HLS protocols (which are
normally VoD, but have been changed to
use mp4).

Problem

I'm lazy.

though hopefully not in a bad way...

Problem

I don't want to have to do anything
more than I have to do.

to get a particular job done.

Problem

I want to reuse code:

• between Live and VoD video

• between real-time batch processing

Doing the same thing over and over again
is pretty boring, and also error prone. 
From a statistical sense it also increases
the amount of time necessary to achieve
a particular amount of certainty about a
result. 
There is a lot of value in reuse, and I'd like
to be able to extract it.

Problem

.. However! 
 
There was no abstraction that would
allow the reuse of the code across all
these use-cases.

There were abstractions across the
different use-cases, sure. Not good
enough!

Things like VC emphasize low-jitter and
transmitting the new data moreso than
the old data. 
When ingesting a new movie or other
show, getting *all* the bytes reliably
matters more than the jitter.  
... and we want to be able to use/reuse
the tools across all of these different use-
cases.

Solution

Add a layer of abstraction.

as usual... 
.. after all every problem is solved with
another layer of indirection, er,
abstraciton!

Question:

Which IO abstraction works for partial
reliability?

Lemme ask you a question. 
Off the top of your head...

Answer:

Datagrams?

I'm guessing that many folks though of
this one:

Answer:

Datagrams?

Datagrams are insufficient 
 
 

You still need IDs somewhere to reorder

If partial reliability admits the possibility of
reordering, then you need some kind of
sequence-number or ID so you can put
things back into the correct order. 
Things like Video are inherently stateful.
Try to play it out-of-order and you'll get
things you probably didn't expect. 
Just as partitioning is a fact of life,
reordering is a fact of life, and data-loss is
a fact of life.

Answer:

Named streams with offsets.

So, I think instead that a superior method
is to use.. named streams with offsets. 
Named so it can be addressed
appropriately. Crossing the streams here
should be avoided.

Answer:

a.k.a the "file" interface, with a tweak: 
 
Doing a read() in a hole should block
until at least one byte exists, or until it
can be guaranteed that the data never
will.

Returning OOB should happen only when
the max-offset of the file is already
known. 
Note I didn't say "file size", but am being
more specific, because what is the size of
a file that has a max-offset of 1MB, but
only has one byte written and the others
are all unknown? 
 
There are *details*. In cases where your
doing things like TCP, you could get OOB
because of reading out of the range of
available addresses, which is not quite

the same as not having data, and it is
different from getting an error suggesting
the connection is terminated, but I digress
a bit...

Observation:

The sockets API either presents
unordered, or ordered delivery of data. 
 
Often, neither is desirable!

Most data which encompasses multiple
packets in most sessions is ordered. 
Presenting it out-of-order, i.e. scatter-
gather potentially makes sense, and is
often a superior tradeoff to presenting a
HoL blocking/high-jitter interface. 
As a reminder, variance is the bane of
existence for many latency-sensitive
applications!

Assertion:

The file interface with the
aforementioned tweak allows for
"normal" in-order delivery without any
real additional complexity, but also
allows for out-of-order delivery.

If it can do what sockets can do (i.e.
telling me what is new), and what files can
do (scatter-gather/out-of-order or random
access), then I have an abstraction that
can work across all of those lovely video
use-cases.

Why does out of
order delivery matter?

In many cases of for video, multicast isn't
available.

You get unicast, and but thankfully we
have CDNs which means we have ways
of reducing the total network work via
caching. 

a.k.a. 
Why the sockets API is

an anti-pattern.

<hit next, then talk again>

a.k.a. 
Why the sockets API is

an anti-pattern.

(even for networking)

If you wouldn't use an in-order API for
reading files, why do it for the network?  
This is why I have problems with the
sockets API. It conflates having an
ordering (which we'll often call having an
address or defining an address space)
with ordered delivery. 
 
To put it another way, imagine that to read
k bytes at offset N in a file you are
required to read (and potentially discard)
all N-1 bytes first. Wouldn't it be far
cheaper to just start reading at offset N?

CDN Proxy

Forwarded Response

Request

Forwarded Request

Response

Lets zoom into a proxy and talk packets.
As a reminder, these proxies make the
internet work with reasonable cost/
efficiency/latency. 
 
These caches, however, can represent
bottlenecks when you do L7 interpretation
in the real world via a sockets (in-order)
API. 
 

CDN Proxy

Forwarded Response

Request

Forwarded Request

Response

Boring, right?

Boring because if the world was that
easy, we wouldn't be talking about "the
edge"... 
The reality is that there is more going on
here.

CDN Proxy

Lets add some packet loss
Forwarded Response

Request

Forwarded Request

Response

In the real world, there is packet loss.

In many cases this can happen even
when there is no channel contention
based on how the congestion controller
does bandwidth probing...

CDN Proxy

Forwarded Response

Request

Forwarded Request

Response

The proxy couldn't forward 
any response bytes until it 
could fill in the hole

Lets add some packet loss

CDN Proxy

Forwarded Response

Request

Forwarded Request

Response

This is otherwise known as 
head-of-line (HoL) blocking

Lets add some packet loss
And HoL blocking causes jitter/variance,
which causes us to fail to use the full
channel goodput towards<next>

CDN Proxy

Forwarded Response

Request

Forwarded Request

Response

The transmission delay for all 
of these will be incurred for 
every upstream

Lets add some packet loss
and any such HoL blocking will impact all
upstream (i.e. downloading) clients.

Problem

Video is almost all represented as files. 
 
Facebook didn't have a file interface.

Fundamental issue if you're doing video
where most video is represented as
streams or files.

Problem

Facebook had many file interfaces.

No, instead... <many file interfaces> 
 
Haystack, HDFS, F4, local filesystem...

Solution

Add another file interface!

Yet another file interface!

Solution

OIL + VCache

Hopefully this one is different... we'll get
into a bunch of the differences, but one of
the interesting things is that we hope that
this is expressive enough to wrap/
encapsulate most public interfaces for
most filesystems and/or object stores.

Now back to your regularly
scheduled programming

File APIs.

I heard that there are folks here who like
file APIs? 
Lets talk about file APIs.

File APIs
open()
read()
close()
write()
delete()
stat()
mkdir()
opendir()
closedir()
rmdir()
link()
unlink()
chmod()
...

here are some sample calls we're
probably all familiar with... 
and my question to you is...

File APIs
open()
read()
close()
write()
delete()
stat()
mkdir()
opendir()
closedir()
rmdir()
link()
unlink()
chmod()
...

What else do you need??

Why would you want to add more? Isn't
that enough?  
Lets answer that question with a
question...

Question:

void some_func(int fd) {
 if (!is_valid(fd)) return;  
 // fd is valid.
 const char data[] = "some data";
 int retval = write(fd, data, sizeof(data));
}

What is stored into 'retval'? 
And what is in errno?

Question:

void some_func(int fd) {
 if (!is_valid(fd)) return;  
 // fd is valid.
 const char data[] = "some data";
 int retval = write(fd, data, sizeof(data));
}

Assume 'fd' is valid.

Answer:

The question is ill-formed. 
 
It depends on the filesystem, quota, capacity,
etc.

Arguably, this is a trick question. There
are many possibilities depending on
filesystem tradeoffs, capacity, etc.

Explanation:

What if 'write' is speaking to a distributed
filesystem and it wishes to have three
replicas? 
 
Two hosts fail the writes, and one succeeds.

Here is a diagram <next>

Explanation:

write()

Explanation:

write()?

what will the return value be??

Banking

write()

In the banking use-case, we didn't get
quorum.  
Since we probably care more about
consistency than availability, this is a no-
go. 
Failing the write (returning an error) makes
the most sense.

Videoconferencing

write()

In the videoconferencing case, however,
you're good to go if you get even one out
there. Availability trumps consistency
most of the time. 
Returning success in this case makes
sense.

Explanation:

The answer to something as simple as: 
 "Does write return an error?" 
depends the filesystem's tradeoffs.

... Or, the application tradeoffs. 
And we know given CAP that we'll have
to make some tradeoffs given that the "p"
in CAP isn't really optional.

Explanation:

Since there are different valid tradeoffs, there
is no single correct answer to the question!

as we already saw with banking vs VC
use-cases.

Why should you care?

In the case of a single host, the failure
domains overlap substantially and behave
similarly.

aaaand You should care about this
because CAP suggests you can't have it
all at the same time.

Why should you care?

However, in the case of a typical distributed
system, the failure domains often exhibit
substantially different behavior.

We worry about the 'P' in cap a lot, as it
seems to be mostly unavoidable at large-
scale deployments.

Why should you care?

So, distributed systems have different
requirements in practice, though not in theory.

probability of failure in distributed
systems is non-theoretical. For the
system to be practical, you must address
it.

Why should you care?

I'd like to propose a few API changes that
could aid in solving this and other problems.

More than just having read() block when
the data is missing (though that is still
cool)...

A new API

The basic idea of this new API is: 
"be explicit".

A new API
void some_func() {
 const char dagname[] = "two_to_be_true";
 auto fd = OIL::create("filename", dagname);
 if (!fd->is_valid()) return;  
 // fd is valid.
 const char data[] = "some data";
 auto retval = fd->write(data, sizeof(data));
 for (auto status = retval.get_status();
 status != OIL::DONE;) {
 if (status == OIL::SATISFIED) {  
 // made forward progress
 }
 }
}

I'll point out that you can have trivial
shims/adapters which make this look like
"Ye Olde File API" that everyone is used
to, but I'm interested in the slightly-lower
layer here, and so that is what I'm
showing.

A new API
void some_func() {
 const char dagname[] = "two_to_be_true";
 auto fd = OIL::create("filename", dagname);
 if (!fd->is_valid()) return;  
 // fd is valid.
 const char data[] = "some data";
 auto retval = fd->write(data, sizeof(data));
 for (auto status = retval.get_status();
 status != OIL::DONE;) {
 if (status == OIL::SATISFIED) {  
 // made forward progress
 }
 }
}

create() requires 
 a DAG and filename

Pointing out that the create/open call is a
bit different. 
It requires a specification-- in this case a
name -- of a "dag", which represents the
I/O policy that will be used.

.. in particular <next>

A new API
void some_func() {
 const char dagname[] = "two_to_be_true";
 auto fd = OIL::create("filename", dagname);
 if (!fd->is_valid()) return;  
 // fd is valid.
 const char data[] = "some data";
 auto retval = fd->write(data, sizeof(data));
 for (auto status = retval.get_status();
 status != OIL::DONE;) {
 if (status == OIL::SATISFIED) {  
 // made forward progress
 }
 }
}

A DAG defines a
virtual filesystem

on which all further 
operations execute.

So, what is a virtual filesystem? In other
places it is defined as something which
doesn't itself store data, but relies on
other things to store the data. 
I'd describe it as something which is a
filesystem from the application-
standpoint, but delegates to other storage
systems. 
In particular, with such a system the
number of virtual-filesystems could be
proportional to the number of files.

A new API
void some_func() {
 const char dagname[] = "two_to_be_true";
 auto fd = OIL::create("filename", dagname);
 if (!fd->is_valid()) return;  
 // fd is valid.
 const char data[] = "some data";
 auto retval = fd->write(data, sizeof(data));
 for (auto status = retval.get_status();
 status != OIL::EXHAUSTED;) {
 if (status == OIL::SATISFIED) {  
 // made forward progress
 }
 }
}

Operations may have 
multiple returns,  

with the most interesting 
 being: 

SATISFIED 
 EXHAUSTED

This is a key observation: the POSIX API
didn't really (signals don't count) provide
for multiple returns, but having multiple
returns is key to solving a number of real-
world problems.

A new API
void some_func() {
 const char dagname[] = "two_to_be_true";
 auto fd = OIL::create("filename", dagname);
 if (!fd->is_valid()) return;  
 // fd is valid.
 const char data[] = "some data";
 auto retval = fd->write(data, sizeof(data));
 for (auto status = retval.get_status();
 status != OIL::EXHAUSTED;) {
 if (status == OIL::SATISFIED) {  
 // made forward progress
 }
 }
}

"SATISFIED" means 
application can now 

make forward progress.

In the case of a read, some of these
returns may be a range of data and the
version of that returned data, but I'm not
going to go into that here as this is mostly
just a teaser! 
<describe SATISFIED as per pink>

A new API
void some_func() {
 const char dagname[] = "two_to_be_true";
 auto fd = OIL::create("filename", dagname);
 if (!fd->is_valid()) return;  
 // fd is valid.
 const char data[] = "some data";
 auto retval = fd->write(data, sizeof(data));
 for (auto status = retval.get_status();
 status != OIL::EXHAUSTED;) {
 if (status == OIL::SATISFIED) {  
 // made forward progress
 }
 }
}

"EXHAUSTED" means 
all effort is done, buffers 

may be deallocated.

This is a key observation: the POSIX API
didn't really (signals don't count) provide
for multiple returns, but having multiple
returns is key to solving a number of real-
world problems. 
<describe EXHAUSTED as per pink, how
that helps with OOM, etc>

What is a filesystem?

Arguably, a filesystem is simply something
which provides a mapping 
 of name -> bytestream.

was a question we had to try to answer.

What is a filesystem?

There are two mappings there: 
 1) name -> something 

2) offset -> byte.

where "something" is some metadata,
and then...<offset>

What is a filesystem?

Effectively: 
 1) metadata 

 2) data

So, if we want to provide something that
looks/acts like a filesystem, for at least
some definition of a filesystem, we
probably need to handle metadata and
data. 
If we are being explicit about nearly
everything, then we need to handle
metadata and data explicitly and
separately. 
So, what is this dag thing that was
referenced above?

What is a DAG?
DAG: two_to_be_true

FS CFS BFS A

RACE 
num_until_satisfied=2 
num_until_exhausted=3 
staggered_start_delay=0ms 
max_concurrency=3

DB A

RACE 
num_until_satisfied=1 
num_until_exhausted=1 
staggered_start_delay=0ms  
max_concurrency=1

Metadata Data

DAGs are I/O policies or plans. In this
case there is a DAG for the metadata and
one for the data.

What is a DAG?

Obviously, a DAG consists of: 
 1) Nodes 
 2) Edges

in the context this new thing?

Obviously I don't mean what is a
"Directed Acyclic Graph", I mean a DAG
in the context of this new API which
defines a virtual filesystem.

What is a DAG?

Nodes may be either :

• the built-in "RACE" node which directs

how/when to use its children,

 or

• storage nodes, which represent potential

storage locations.

in the context this new thing?

we know a dag is nodes and edges (and
further has no cycles).

.. what are the nodes?

What is a DAG?

All nodes can also have a "transform stack"

A transform stack enables address-space
and/or data transformations

in the context this new thing?

this is a potentially strong win for
efficiency. 
I'll also note that others have thought of
some similar things in the past. 
HTTP transfer-coding and content-
coding, for instance..

What is a DAG?

Example transforms:

• chunking

• reed-solomon based FEC

• gzip

• encrypt

in the context this new thing?

in the case of FEC, etc. failure-domains
are represented as disparate children of
the node with the transform. 
You could apply this to a 'race' node. 
 
This is probably suboptimal, and is
something I think can be improved.

Transform Example:

Chunking is the most often used, and does
address-space transforming from one virtual
address space to multiple physical.

0 -> k-1 k -> 2k-1 2k -> 3k-1 3k -> 4k-1 4k -> 5k-1

0 -> k-1 0 -> k-1 0 -> k-1 0 -> k-1 0 -> k-1
Chunk 0 Chunk 1 Chunk 2 Chunk 3 Chunk 4

Apparent address

This is very commonly used because the
size of the chunk has very strong impacts
on the amount of transactional or I/O
overhead, it impacts the amount of data
which shares fate on the same host, and
affects the total amount of bandwidth that
is on offer to satisfy the I/O.

Stack of Transforms

Since each node is labeled explicitly with the
transforms that are needed to access the
data, serialization or transformations need be
done only when they don't match between
parent/child.

Stack of Transforms

Node
Chunk 1MB

Encrypt
Node

Chunk 1MB
Encrypt

Node
Chunk 256K

Encrypt
Node

Chunk 10MB
Encrypt

re-chunk

Node
Chunk 1MB

Encrypt
Node

Chunk 10MBunencrypt

Going left-to-right, with three different
scenarios.

What is that 'RACE' thing?

RACE 
num_until_satisfied=2 
num_until_exhausted=3 
staggered_start_delay=0ms  
max_concurrency=3

RACE is what makes this interesting.

This is one of my favorite parts of this new
OIL thing.

What is that 'RACE' thing?

RACE 
num_until_satisfied=2 
num_until_exhausted=3 
staggered_start_delay=0ms  
max_concurrency=3

Race is a built-in node that expresses: 

1) When the operation has been satisfied, i.e. an
application can make forward progress 

reminder: 'Satisfied' generally means
"application can make forward progress",
as a convention. But it could mean
whatever.  
You can think of this node as expressing a
map-reduce policy-- when/how to map,
and how to reduce.

What is that 'RACE' thing?

RACE 
num_until_satisfied=2 
num_until_exhausted=3 
staggered_start_delay=0ms  
max_concurrency=3

Race is a built-in node that expresses: 

2) When the operation has been exhausted, i.e.
all work on the operation has ceased.

When the operation is exhausted, there is
no more work ongoing. In cases where
the application cares about overlap, this
provides a mechanism for the application
to do whatever it needs to do to resolve
any remaining issues, including kicking off
another I/O-write.

What is that 'RACE' thing?

RACE 
num_until_satisfied=2 
num_until_exhausted=3 
staggered_start_delay=0ms  
max_concurrency=3

Race is a built-in node that expresses: 

3) When the some work should start executing, in
particular, how long to wait before starting
available work.

A common optimization in systems that
are doing quorum-reads is to read only
quorum, instead of from all potential
replicas. You can imagine using this delay
on those nodes that'd be the "spares". 
Or, in the case where you want any copy
of the data, you can reduce the amount of
effort in the common-case.

What is that 'RACE' thing?

RACE 
num_until_satisfied=2 
num_until_exhausted=3 
staggered_start_delay=0ms  
max_concurrency=3

Race is a built-in node that expresses: 

4) How much of the available work can be
scheduled concurrently.

I hope this one is obvious-- the race node
will only allow up-to 'max_concurrency'
children to execute simultaneously.

Examples

RACE 
num_until_satisfied=1 
num_until_exhausted=3 
staggered_start_delay=0ms  
max_concurrency=1

This is expressive enough to describe any serial
if-then-else chain. 

FS CFS BFS A

Examples

RACE 
num_until_satisfied=1 
num_until_exhausted=3 
staggered_start_delay=0ms  
max_concurrency=1

This is expressive enough to describe any serial
if-then-else chain. 

FS CFS BFS A

A max-concurrency of one implies serial
behavior, where child nodes will be visited
from left->right.

Examples

RACE 
num_until_satisfied=1 
num_until_exhausted=3 
staggered_start_delay=0ms  
max_concurrency=3

This is expressive enough to describe "try all"

FS CFS BFS A

Examples

RACE 
num_until_satisfied=1 
num_until_exhausted=3 
staggered_start_delay=0ms  
max_concurrency=3

This is expressive enough to describe "try all"

FS CFS BFS A

Note that max-concurrency is 3. As you'd
expect means that we can try up-to-three
things simultaneously. In this case that
implies fully parallel behavior.

Examples

RACE 
num_until_satisfied=2 
num_until_exhausted=3 
staggered_start_delay=0ms  
max_concurrency=3

This is expressive enough to describe  
quorum writes or reads

FS CFS BFS A

As noted in the "quiz" before, there is not
a single answer to the question of 'what
to return' when there are multiple
subordinate components with different
answers... unless you can talk about that
explicitly! 
num_until_satisfied signals when forward
progress can be signaled upwards to a
parent (or the root, which is the
application). 
In this case 2 (out of the three) must be
satisfied before the race node itself
returns that it is satisfied.

Storage Nodes

Storage nodes can be things like:

• localFilesystem

• haystack

• HDFS

• whatever.

What is a 'storage node'? 
 
It is the place where the virtual becomes
physical (or at least seems to).

Storage Nodes

To import a storage system into the abstraction:

• Metadata nodes must express put/get and a few other
things.

• Data nodes must express pwrite/pread and a few other
things.

things like copy(), and similar things are
stubbed out by doing a new open()-
>write(), but for filesystems that support
such things directly, the writer/importer
can provide filesystem-specific glue. 

Typically adding a new filesystem is the
work of 2-3 days for a single developer...
not that we've done enough to say that
with stat-sig certainty...

What about edges?

Edges allow the expression/override of read-only variables. 
 
Edges can also express the protocol, QoS, etc. by which a
transfer should occur.

We talked about nodes and edges... so
what about the edges? 
When a DAG is executed, a dictionary of
read-only values is passed into each
node. The node *cannot* modify this
dictionary, but it can change its behavior
based upon the values within. 
 
Edges can also express things that
should happen during a transfer. QoS is
something that might be commonly
signaled here.

What about buffering?

Buffering is not an afterthought for any system that cares
about efficiency.

If all there was was a single-layer, it'd be
pretty boring, and I wouldn't be standing
here.

What about buffering?

In addition to the DAG, we also have a distributed-virtual
memory system. This is available as the "VCache" storage
node. 
 
Putting the two of these together, we get OIL+VCache.

• OIL -> Output Input Language

• VCache -> Virtual Cache.

OIL is the part of this which is the pure
API. It defines how the DAGs are
interpreted, and what the code surface
looks like. 
VCache is the catch-all cache and buffer.

What about buffering?

VCache knows about dirty pages, clean pages, and files. 
 
VCache is accessed using OIL DAGs. 
 
VCache is different from other caches because it evicts
using OIL DAGs.

Virtual Memory?

Unlike a number of caches, VCache is
meant to look/act like a virtual memory
subsystem, at least as viewed externally.
This means that it handles write-back, not
just look-aside.

What about buffering?

Because VCache is written-to and evicts using OIL DAGs,
the DAG represents a holistic policy in which all actors
(nodes) parts are understood by all.

Virtual Memory?

Why would you care? 
I'll say it again, the real-world
performance is going to be dependent on
how you buffer/cache. 
 

What about buffering?

VCache understands various write-modes, including:

• write-back "immediate"

• write-back "lazy"

• write-through

• write-around

• write-clean

Virtual Memory?

will describe these in a second.

What about buffering?

What the modes mean:

• write-back "immediate"

• VCache is immediately satisfied, and will

immediately attempt to clean a dirty page for the file.

• write-back "lazy"

• VCache is immediately satisfied, and will attempt to

clean a dirty page when it is likely to be 
force-evicted.

Virtual Memory?

immediate -- asynchronous, but not trying
to save backing-store IOPs.

lazy -- async and attempting to save
backing-store IOPs. great for tmp things.

What about buffering?
What the modes mean:

• write-through

• VCache will not return satisfied until the backing-

store DAG-write returns satisfied.

• write-around

• VCache will be avoided for writes-- writes will

instead use the sub-dag of the VCache nodes
directly.

• write-clean

• Data written will be declared 'clean', and thus the

sub-dag won't be used for writing.

Virtual Memory?

write-through: satisfied happens when
done happens.

write-around: This is useful when the read
topology != the write topology, but the
DAG authors are too lazy to write two
entirely different DAGs. 
write-clean: allows VCache to act as a
look-aside cache. 
Did I mention the 'being lazy' bit??

What about buffering?

Reads can (also) have side-effects.

 
Some modes also exist for reading, primarily to direct when
to populate the cache or whether to promote an item to the
head of the cache. 
 
I won't go into these details, other to say that they (can)
exist.

Virtual Memory?

.. and not only do they exist, they can
have significant impacts on real-world
performance.

What about buffering?

Since this is a *distributed* virtual memory system, there
are any number of locations by which the data can be
stored. 
 
You can have a VCache that is localhost only, or one which
is deployed remotely in the same cluster, or remotely... 
 
... or all of the above!

Virtual Memory?

and each v-cache has its own idea about
whether pages are dirty/clean, etc. So the
localhost cache can believe the pages are
clean (it did its job of writing to backing-
store), while the remote caches may still
have dirty pages.

What about buffering?

A VCache is thus accessed by stating its instance, plus the
filename/object in question.

Virtual Memory?

There is a difference between a 'localhost'
VCache and a VCache using the
machine's IP:port. 
The former is private, while the latter is
network accessible.

Real-World Example

RACE 
num_until_satisfied=2 
num_until_exhausted=3 
max_concurrency=3

VCache 
wm=wt 
instance=localhost

VCache  
wm=wb_lazy 
instance=cluster_a
replica=0

VCache 
wm=wb_lazy 
instance=cluster_a
replica=1

VCache 
wm=wb_lazy 
instance=cluster_b
replica=2

OtherFilesystem 
instance=global

The localhost vcache takes ownership of
the data and,then propagated ASAP to
three different VCaches, two of which are
in the same instance, and another is in
another instance. When two remote
VCache writes succeed, the write is
satisfied. 

Real-World Example

RACE 
num_until_satisfied=2 
num_until_exhausted=3 
max_concurrency=3

VCache 
wm=wt 
instance=localhost

VCache  
wm=wb_lazy 
instance=cluster_a
replica=0

VCache 
wm=wb_lazy 
instance=cluster_a
replica=1

VCache 
wm=wb_lazy 
instance=cluster_b
replica=2

OtherFilesystem 
instance=global

Finally, the remote VCaches evict to
OtherFilesystem before the data would be
lost.

OIL+VCache

As one may involve multiple caches, one can describe a
cache hierarchy. 
 
The DAG not only allows this, it requires this to be
expressed, else caching will not occur. 
 

Hierarchical Access

as was seen in the prior diagram which
had a hierarchical caching description! 
 
.. and yes, individual storage nodes may
have their own caching.  
... so it is probably more correct to say
that caching won't occur in a semantical-
interesting way/won't be explicitly
addressable, manipulatable or shareable.

OIL+VCache

Why bother? 
 
Multiple processes on the same machine can avoid network
I/O. 
 
When transmitting over long-haul links, you can delegate the
replication to something closer to the destinations. 

Hierarchical Access

.. and with long-haul links being a fact of
life in this new world of clouds, and with
those long-haul links having significantly
less bandwidth, this can provide for
significant latency and overall cost
benefits at scale.

What about the Metadata?

Consistency is desirable to application programmers.

While the DAGs described here are generic enough to
express Paxos, which could provide consistency... 
 
 ...it is more often useful to use a system optimized
specifically for metadata.

I described both a metadata dag and a
data dag as part of the OIL policy dag. 
I'll get back to the Paxos thing in a while...

What about the Metadata?

The Metadata DAG operates the same as a Data DAG, but
operates on objects/atoms instead of offsets/bytes. 
 
The Metadata DAG is always executed before the Data
DAG. 
 
This implies that an easy way to guarantee consistency is to
delegate such concerns to the Metadata DAG.

The metadata DAG can also
communicate an 'authority' to the data
dag. This is a means by which cases
where there's been a network partition
leading to a lack-of-quorum can be
understood. This changes the name of
the data-dag files, and would require an
application to understand how to merge
things. 
 When things come back up, the data
under the weaker authority name can be
promoted to the strong-consistency
authority by renaming the data. 
 Unlike the data dag, which can change
over the lifetime of a file, the metadata
dag cannot. Thus, it probably makes
sense to have it be separate.

What is the Metadata?
Metadata is at least:

• filename

• lease-holder address

• lease-end-of-life-time

• data-dag "name"

• per-storage-node-data

Given a DAG, the size of metadata is O(nodes-in-dag). 
 
For DAGs composed of storage nodes that allow keys to be
defined by the application, the data-dag is sufficient and no
additional metadata storage is required.

There are storage systems that give you a
handle and don't let you provide a name.
These will require some additional
metadata storage (i.e. to store the
handle).

What is the Metadata?

The address/location of any offset is the computed using
the data-dag.

Fun Example: 
 Paxos as config

Race 
ne=2 
ns=2 
mc=1

Race 
ne=3 
ns=2 
mc=3

VCache 
 

r=$R 
op=$OP

OP=propose?

OP=accept?

R=0

R=2

R=1Version=42

This would be executed left-to-right, top-
to-bottom. 
 
The application would supply that the
version is 42. 
The first race node will serially request
"propose" of its child. 
That child (the middle node) will then talk
to three different VCaches, and declare
'satisfied' when a quorum of 2 (out of
three) has been successful (i.e. were OK
with proposal). 
Then, the same thing will happen with

accept.

Fun Example: 
 Multi-Paxos as config

Race 
ne=2 
ns=2 
mc=1

Race 
ne=2 
ns=2 
mc=3

VCache 
 

r=$R 
op=$OP

OP=propose?

OP=accept?

R=0

R=2

R=1

Version=42 VCache

To have a leader, just add another VCache
node. 
The trick there will be electing it, but we
can leave that to the metadata-dag, which
could do a paxes-round to elect/discover
the leader...

Aside:

Everything is a cache.

potentially controversial/you may
disagree... but bear with me! 
Perhaps another way to say this is that
everything should be thought of as a
cache...

Aside:

A filesystem is a cache

Aside:

A filesystem is a cache
... with a policy of 'reject new' on overflow.

For instance, what happens when your
filesystem can store 1TB, and you offer it
3TB of data? 
You'd reject the newest 2TB out of the
3TB offered.

Question:

You have three hosts, each with 1TB of space.
The user wants to write 1TB of logical data.
Each write is replicated to each host.

How much data is lost?

another fun scenario...

Another way to say this is that you have
1X physical storage, and 1X logical data,
but the logical -> physical mapping is 1:3.

Multiple Choice:

1. None, the clients will eternally
buffer 2TB and never crash

2. 2 TB is lost

3. Nothing is lost

2/3 means 2-out-of-three here. 
Why did we need a storage system at all if
we could delegate all storage to the
clients?

Answer:

Trick question -- it depends on the
eviction policy.

everything is a cache! 
After all that just means having an explicit
plan for when you've run out of capacity!

Question:

What would happen if the Nth
replica was evicted before the
N-1th replica?

For each host, if it had a 1th replica, all
other things being equal, it'd be sure to
evict any 2th replicas prior to evicting the
1th replicas.

Answer:
Replication would reduce as logical
storage approaches physical
capacity. 
 
Probability-data-loss went from 
 100% chance of losing 2/3 of data 
to 
 host-availability * media-availability

Surprisingly, by treating everything as a
cache, we *increase* reliability. 
 
This would not be OK for some data-- it'd
be better to lose the new data instead of
the old (e.g. financial transactions), but in
many cases such tradeoffs make sense.

Making an assumption about what
is appropriate for a user is likely to
be wrong in many cases.

Or at least it will make application-
programmers implement work-arounds
that'll be difficult or expensive and time
consuming to find and back-out. 
 
Moving the complexity of the system out
to the edges almost always means more
code and total system complexity...

Problem:

An abstraction with multiple return
values doesn't look like Posix. 
 
How will apps use it?

People like the Posix API, or are at least
familiar with it. 
.. and if not people, then there is a vast
body of prior code and binaries that
expect to be able to use it.

Answer:

New applications can use the new
API.

Answer:
Make a FUSE mount, and have a
local VCache manage the memory
for async operations to ensure no
OOMing. 
 
Old applications can use the FUSE
mount.

This isn't perfect. FUSE isn't as
performant as one would like, but getting
the application-layer expectations right
often matter more to performance that the
IOBench or other uBenchmarks would
imply. 
I'm sure there is plenty of future-work
here in seeing if one couldn't efficiently
express such things to the kernel. 
I wonder what we'd call that language?

Question:

You have a hierarchy involving
multiple layers of systems. 
 
How many total I/O attempts will
occur?

There is the answer for when things are
succeeding vs failing. 
Failing is the interesting case...

Question:

In many cases k^n total attempts
where: 
 k == number of retries per layer 
 n == number of layers.

hmm... k^n. I think we call that
exponential.

Observation:

I don't think that is what they mean
by: 
 

"Try to grow the business
exponentially"

Ouch.

Problem:

Effort should decrease as system
health overall decreases.

Not deceasing effort as things get bad, at
least in many shared/distributed systems,
can result in cascade failure. 
I've been there, and that sucks.  
This is why we have TCP (or other
network) congestion control, for instance.

Solution:

Each I/O can use a sub-DAG.

If you have three replicas, and the first
one is always dead, it wouldn't be an
efficient use of time/effort to attempt to
schedule the I/O to that server.

OIL allows per-IO
customization

When you're doing a filesystem
scrub, or a heal of a known-

missing replica...

OIL allows per-IO
customization

.. you probably want to be
targeting specific parts of a DAG.

and again, though you can do per-IO
customization, the per-IO subdag is
required to be composed of storage
nodes, unaltered, from the original DAG
plus new/different RACE nodes. 

There is more, but
We won't likely have time to cover everything in depth, so
here is some of what I'm skipping: 

• Migration - moving data from one data DAG to another.

• Co-routine based implementation.

• Real-world data (we have some, it looks good).

• Peer-to-peer caching of hot data.

• Read+scatter-gather.

• Write+scatter-gather.

• mmap/remote swap.

• Event filtering - not all applications care about all return

values

Read DAGs can be different from write
dags, can be different from 'storage'
dags. 
Also not getting into that, but it is pretty
useful in some cases.

Bringing it home

I think that OIL+VCache is cool and interesting... 
 
.. but that isn't the real point.

Bringing it home

It is my hope that this makes you think and rethink
"Ye Olde Storage Abstractions".

It is our hope that OIL+VCache inspires
further innovation of abstractions and
APIs across the industry and in academia. 
Hey, we probably got it wrong. I look
forward to hearing how it can be done
better in the future. 
We chose a non-turing complete
description/language to describe these
DAGs so that we could more easily
reason about the surfaces. Maybe that
was right, maybe that was wrong?

Thanks!

fenix@fb.com

