
© 2019 IBM Corporation

Takeshi Yoshimura, Tatsuhiro Chiba, Hiroshi Horii

IBM Research – Tokyo

HotStorage 2019

EvFS: User-level, Event-Driven File System for
Non-Volatile Memory



© 2019 IBM Corporation

Hard disk drives (HDD)

Non-volatile memory (NVM) is fast storage
§Enables low-latency data processing with persistency and high capacity

–Extremely lower latency (1 - 100 us) than SATA SSD and HDD (-10 ms)
–Higher capacity than DRAM

§Available as non-volatile main memory (NVMM) and NVM Express (NVMe)
–Apps can access both NVM types through file systems (FS) such as ext4

2019/7/8 EvFS: User-level, Event-Driven File System for Non-Volatile Memory2

Capacity

Latency

SATA SSD

Non-volatile memory express (NVMe) SSD

Non-volatile main memory
(NVMM)

DDR DRAM ~80 -100 ns

<1 us

10-100 us

~10 ms

Modified figure of PMDK documentation
(https://docs.pmem.io/getting-started-guide/introduction)

Our target is both NVM

https://docs.pmem.io/getting-started-guide/introduction


© 2019 IBM Corporation

Kernel FS is a huge overhead for fast storage
§The major overheads are reported in [Peter ’14], [Volos ’14], etc.

–User-kernel context switches
–Locks
–Memory copies around page cache
–Other complex FS features

§In our experience, ext4 spent >5 us for in-memory 64B write()*
–No fsync and persistent writes, but 500 % time for NVM latency

2019/7/8 EvFS: User-level, Event-Driven File System for Non-Volatile Memory3

pread()Thread A

pwrite()Thread B

Context switches Memory copies

Page 
cache

Kernel FS
LockKernel mode

Block/device driver

Page cache

Memory copies

User buffer

* experiments on
IBM Power System AC922
1.1TB RAM
160 logical Power9 cores
PCIe3 x8 6.4 TB NVMe
https://www.ibm.com/support/
knowledgecenter/8335-
GTH/p9hcd/fcec5e.htm
Ubuntu 18.04LTS, Linux 4.17
SPDK 19.0, DPDK 18.02
ext4: disabled journaling and 
readahead

https://www.ibm.com/support/knowledgecenter/8335-GTH/p9hcd/fcec5e.htm
https://www.ibm.com/support/knowledgecenter/8335-GTH/p9hcd/fcec5e.htm


© 2019 IBM Corporation

Existing approach: Direct-access (DAX) FS
§Enables direct mapping of NVM to userspace

–Linux ext4-DAX, PMFS [Dulloor ’14], Aerie [Volos ’14], SPDK* BlobFS

§Simplifies FS architecture
–e.g., remove page cache to avoid redundant memory copies

§Provides POSIX APIs and DAX interfaces (e.g., mmap, get/put) to apps

2019/7/8 EvFS: User-level, Event-Driven File System for Non-Volatile Memory4

*Storage performance development kit (https://spdk.io/)

loadThread A

storeThread B
Page 
cache

Kernel FS

NVMM
(mmap()’ed)

https://spdk.io/


© 2019 IBM Corporation

Limitations of existing DAX FS
§DAX interfaces are non-portable

–Many apps depend on POSIX file I/O, e.g., pread()
–Apps need difficult device management such as cache flushes

§POSIX file I/O is suboptimal
–Page cache removal can slowdown apps due to high write latency of NVM [Ou ’14]
–DAX FS running in the kernel requires context switches for POSIX file I/O
–BlobFS requires locks for page cache despite its limitation of access patterns

5 EvFS: User-level, Event-Driven File System for Non-Volatile Memory2019/7/8

Direct-access FS DAX interface Running mode Page cache

Linux ext4-DAX mmap Kernel No

PMFS [Dulloor ’14] mmap Kernel No*

Aerie [Volos ’14] put/get User No

SPDK BlobFS No User No random accesses

*HiNFS [Ou ’16] introduced
Page cache in PMFS



© 2019 IBM Corporation

Our proposal: EvFS
§Optimizes POSIX file I/O for general Linux apps on NVM

–Least user-kernel context switches with full user-level storage stack
–Lock-free page cache with event-driven architecture
–Dynamic link library exposing POSIX APIs

§Provides direct I/O as a DAX interface
–Enable apps to selectively bypass page cache for file I/O

§Built on top of SPDK block layer that supports both NVMM and NVMe
–Can be extended to RAID, logical volumes, and other extended storage features

2019/7/8 EvFS: User-level, Event-Driven File System for Non-Volatile Memory6

Thread A

Thread B

pread()
Page
cache

pwrite()

LibEvFS

Page 
cache

Kernel FS

NVMeNVMM
Block layer



© 2019 IBM Corporation

Contributions
§Show early design and implementation of user-level, event-driven FS for NVM

–Not completed implementing all POSIX semantics yet
–Not implemented journaling yet

§Report preliminary microbenchmark results with FIO and NVMe
–Other benchmarks and NVMM evaluation are future work

2019/7/8 EvFS: User-level, Event-Driven File System for Non-Volatile Memory7

Direct-access FS DAX interface Running mode Page cache

Linux ext4-DAX mmap Kernel No

PMFS [Dulloor ’14] mmap Kernel No

Aerie [Volos ’14] put/get User No

SPDK BlobFS No User No random accesses

EvFS Direct I/O User Yes



© 2019 IBM Corporation

Key design of EvFS
§Event-driven architecture

§A dynamic link library exposing POSIX APIs

§User-level storage stack

2019/7/8 EvFS: User-level, Event-Driven File System for Non-Volatile Memory8

Thread A

Thread B

pread()
Page
cache

pwrite()

LibEvFS

Page 
cache

Kernel FS

NVMeNVMM
Block layer



© 2019 IBM Corporation

NVMeNVMM
Block layer

Event-driven architecture
§Execute all FS operations including page cache as asynchronous events

–Create lock-free ring buffers to manage event descriptors
–Run poller threads that atomically execute events, i.e., without locks

• Eventually convert events into low-level requests to NVM
• Execute I/O polling and notify its completion through callbacks

§Minimize the latency of POSIX file I/O
–For blocking I/O, FS can reduce locks and coalesce I/O
–For non-blocking I/O, apps can return immediately after submitting an event

2019/7/8 EvFS: User-level, Event-Driven File System for Non-Volatile Memory9

Thread A

Thread B

pread()
Page
cache

pwrite()

LibEvFS

Page 
cache

Kernel FS

Lock-free
ring buffer



© 2019 IBM Corporation

Example execution flow

(1)pread() called by apps enqueues file I/O and sleeps

(2)Page cache parses file I/O and submit a block I/O event

(3)Block layer parses and submits the I/O to NVM and executes I/O polling

(4)If I/O is completed, the block layer calls the callback for page cache

(5)The callback notifies the I/O completion to the sleeping context
2019/7/8 EvFS: User-level, Event-Driven File System for Non-Volatile Memory10

pread()

Page
cache

Thread A
(1)

(2)

(3)

Execution flow of blocking I/O

(5)
(4)

NVMeNVMM
Block layer



© 2019 IBM Corporation

Dynamic link library exposing POSIX APIs
§EvFS exposes POSIX functions (e.g., pread) with its dynamic link library

–Apps have to load libEvFS before LIBC and define device configs and mounted path

§The POSIX functions invoke EvFS for file I/O under the mounted path
–Non-file I/O or accesses outside of the mounted path are redirected to LIBC
–The EvFS library creates a private mount point for an app

§Hook thread-creation APIs in LIBC to minimize the latency
–Create per-thread I/O channel and memory pool

• Avoid thread contentions and system calls for memory allocations for event descriptors

2019/7/8 EvFS: User-level, Event-Driven File System for Non-Volatile Memory11

Thread A

Thread B

pread()
Page
cache

pwrite()

LibEvFS

Page 
cache

Kernel FS

NVMeNVMM
Block layer



© 2019 IBM Corporation

User-level storage stack
§EvFS is built on top of SPDK Blobstore to manage NVM data

–Regard BLOB, a management unit of NVM data in Blobstore, as inode as done by BlobFS
–Emulate a directory structure with special BLOBs that have pointers to other BLOBs
–Support user-level block drivers of SPDK NVMe and PMDK NVMM

• Can also run with various advanced block drivers (e.g., RAID) in SPDK

§EvFS introduces Linux-like page cache at userspace
–Cache NVM data in device page-granularity with offset as a key
–Allow bypassing page cache with O_DIRECT in open() flags

2019/7/8 EvFS: User-level, Event-Driven File System for Non-Volatile Memory12

Thread A

Thread B

pread()
Page
cache

pwrite()

LibEvFS

Page 
cache

Kernel FS

NVMeNVMM
Block layer



© 2019 IBM Corporation

Preliminary evaluation
§Compare EvFS and ext4 performance with FIO

–Evaluate random access latency and throughput with a single thread
–Measure non-blocking writes and blocking reads/writes with/without direct I/O
–Disable the journaling of ext4 and readahead
–Suppose that we have enough memory

§Environment: IBM Power System AC922
–2 sockets x 20 cores x 4 SMT (POWER9 3.8 GHz), 1 TB RAM
–Ubuntu 18.04 LTS, Linux 4.17
–NVMe: PCIe3 x8 6.4 TB https://www.ibm.com/support/knowledgecenter/8335-GTH/p9hcd/fcec5e.htm

2019/7/8 EvFS: User-level, Event-Driven File System for Non-Volatile Memory13

https://www.ibm.com/support/knowledgecenter/8335-GTH/p9hcd/fcec5e.htm


© 2019 IBM Corporation

Result 1/3: Non-blocking writes
§EvFS reached ~0.7 us at 64 and 128 B writes

–ext4 showed 5 - 20 us

§EvFS showed up to 2.5 GB/s with a single thread
–Both EvFS and ext4 write only page cache
–Minimized latency by context switch elimination and event-driven architecture 

0.0
0.5
1.0
1.5
2.0
2.5
3.0

64
 B

12
8 

B

1 
KB

4 
KB

Th
ro

ug
hp

ut
 (G

B/
s)

Block size

ext4 EvFS

0
5

10
15
20
25

64
 B

12
8 

B

1 
KB

4 
KB

w
rit

e(
) L

at
en

cy
 (μ

s)

Block size

ext4 EvFS

Lo
w

er
 is

 b
et

te
r

H
ig

he
r i

s 
be

tte
r

IBM Power System AC922
1.1TB RAM
160 logical Power9 cores
PCIe3 x8 6.4 TB NVMe
https://www.ibm.com/support/
knowledgecenter/8335-
GTH/p9hcd/fcec5e.htm
Ubuntu 18.04LTS, Linux 4.17
SPDK 19.0, DPDK 18.02
ext4: disabled journaling and 
readahead

0.
00

96

0.
04

7

0.
00

75

0.
09

8

0.
06

0

0.
75

0.
70 0.

89

1.
12

2019/7/8 EvFS: User-level, Event-Driven File System for Non-Volatile Memory14

https://www.ibm.com/support/knowledgecenter/8335-GTH/p9hcd/fcec5e.htm
https://www.ibm.com/support/knowledgecenter/8335-GTH/p9hcd/fcec5e.htm


© 2019 IBM Corporation

Result 2/3: Blocking writes
§EvFS reduced the latency of direct I/O by 20 us

§Direct I/O showed better throughput than buffered I/O
–Buffered I/O is measured by a pair of write() and fsync()
–Direct I/O can accelerate apps with self-managed cache

0
50

100
150
200
250
300

Buffered I/O Direct I/OTh
ro

ug
hp

ut
 (M

B/
s)

ext4 EvFS

0
5

10
15
20
25
30
35
40

Buffered I/O Direct I/Ow
rit

e(
) L

at
en

cy
 (μ

s)

ext4 EvFS

Lo
w

er
 is

 b
et

te
r

H
ig

he
r i

s 
be

tte
r

1.
20

2019/7/8 EvFS: User-level, Event-Driven File System for Non-Volatile Memory15

IBM Power System AC922
1.1TB RAM
160 logical Power9 cores
PCIe3 x8 6.4 TB NVMe
https://www.ibm.com/support/
knowledgecenter/8335-
GTH/p9hcd/fcec5e.htm
Ubuntu 18.04LTS, Linux 4.17
SPDK 19.0, DPDK 18.02
ext4: disabled journaling and 
readahead
Blocksize: 4 KB

https://www.ibm.com/support/knowledgecenter/8335-GTH/p9hcd/fcec5e.htm
https://www.ibm.com/support/knowledgecenter/8335-GTH/p9hcd/fcec5e.htm


© 2019 IBM Corporation

Result 3/3: Blocking reads
§EvFS reduced latency for both buffered and direct I/O by 20 us

0
10
20
30
40
50
60

Buffered I/O Direct I/OTh
ro

ug
hp

ut
 (M

B/
s)

ext4 EvFS

0
20
40
60
80

100
120

Buffered I/O Direct I/Ore
ad

() 
La

te
nc

y 
(μ

s)

ext4 EvFS

Lo
w

er
 is

 b
et

te
r

H
ig

he
r i

s 
be

tte
r

2019/7/9 EvFS: User-level, Event-Driven File System for Non-Volatile Memory16

IBM Power System AC922
1.1TB RAM
160 logical Power9 cores
PCIe3 x8 6.4 TB NVMe
https://www.ibm.com/support/
knowledgecenter/8335-
GTH/p9hcd/fcec5e.htm
Ubuntu 18.04LTS, Linux 4.17
SPDK 19.0, DPDK 18.02
ext4: disabled journaling and 
readahead
Blocksize: 4 KB

https://www.ibm.com/support/knowledgecenter/8335-GTH/p9hcd/fcec5e.htm
https://www.ibm.com/support/knowledgecenter/8335-GTH/p9hcd/fcec5e.htm


© 2019 IBM Corporation

Summary
§Showed early design and implementation of EvFS for NVM

–EvFS minimizes the latency of file I/O with full user-level storage stack, event-driven 
architecture, and direct I/O

–FIO showed 700 ns latency for non-blocking writes
–EvFS reduced the latency for blocking I/O by 20 usec

§Future work:
–Implementation of missing POSIX semantics, journaling, etc.
–Evaluation with NVMM and other benchmarks

2019/7/9 EvFS: User-level, Event-Driven File System for Non-Volatile Memory17

Thread A

Thread B

pread()
Page
cache

pwrite()

LibEvFS

Page 
cache

Kernel FS

NVMeNVMM
Block layer


