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What Is Network Traffic Inference?

" Network traffic analysis is classical research topic
— Study, measure, and estimate flow characteristics
> E.g., burst size and interarrival time distributions, mean values

— Network nodes (routers) regularly sample packets
> To provide data used for analysis

= Why?
— Traffic monitoring
» Spot anomalies, (D)DoS attacks, heavy hitters
— Help manage networking resources
> Wireless spectrum among most precious networking resources

— Program network nodes (SDN)
> Improve Tx-Rx scheduling, interference mitigation



Flow Pattern

Sequence of data bytes (run) with waiting times (gap)
Runs-and-gaps model

— Flow pattern = time series data
> Simple, but powerful abstraction

— Applicable at any node (src, dst, intermediate)
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Runs-and-gaps Time Series Processing
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Origin Flow Pattern Inference in Wi-Fi (1)
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= QOrigin flow pattern (f)
— Conveys application-level data generation context
— As entering source Tx buffer

= Measured flow pattern (x)
— At best, x = time-shifted f
— Reflects severity of congestion/mix with other flows
— As timestamped at receiver Rx buffer



Origin Flow Pattern Inference in Wi-Fi (2)
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" Problem: how to accurately infer origin flow
pattern f, from received pattern x,5?

— Key challenge: CSMA alters origin pattern by introducing
complex, irregular mixture of competing flows

— Bottomline: multiclass classification problem




Approaches (Classical)

= Supervised learning

— ARMAX
> AR =delayed ground truth patterns (f)
> MA = model error (g)
> X =delayed received patterns (x)
> Trainf,=[f_, ...f._ X_, ... X._, €]0 with labeled dataset {x!,<f [1)>}
» Estimate 0 via least squares (recursive LS by Kalman filtering)
— Naive Bayes classifier
> Using featurey = [u,,, Uy, fOr given x
> Train p(/]y) o< p(x]|/) from with {x) yt) [}

= Semi-supervised learning

— (Gaussian mixtures
> Use same feature, bivariate y = [u,, U,,] for given x
> Train K-Gaussian sum ~ {w,(l,2)} via EM with {x),y()} (unsupervised)
» W =mixing weights, (n,Z) = Gaussian parameters

> Classification: use SVM (supervised)
» Train with posterior (membership) probabilities with {x() <f [)>}



Our Approach

= Semi-supervised learning

— Phase |: unsupervised feature learning
1. Sparse coding & dictionary learning (unlabeled x’s)
2. Subsample features via (max) pooling
3. Repeat for multiple layers (feed current layer’s result as
next layer’s input)
— Phase Il: supervised classifier training
1. Do multi-layer sparse coding and pooling with labeled x’s

2. Train SVM classifiers with final feature vector resulted at
top



Multi-layer Feature Learning and SVM Classification
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What Is Sparse Coding?

K dictionary atoms (K > N)

OMP & K-SVD
Size N Size K
Inner

product

Describe input x as M linear combination of D’s columns
X =Dy
— X =measured flow pattern

— y = extracted feature from x

— OMP computesy & K-SVD trains D
> min||X=DY||2 s.t.|lyll, <M Vk
— Sparsity: M<<N< K

Sparse coding, clustering, and mixtures are fundamentally
same idea



What Is Max Pooling?
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= What do we do when we have too many of same kinds?
— Need to summarize over them

= Max pooling
— Translation-invariant subsampling of multiple feature vectors
— Popularin CNN for image recognition



Summarizing Deep Feature Learning
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Enhancements

" |ncoherent dictionary atoms

— Force: ||D'DJ| = I with new constraint
> min|X=DY|.2 + yID'D-1||.2 s.t. llylly < M’ Vk

= Relax sparsity due to distortions resulted by
incoherent dictionary training

— Use M’> M for OMP

= Qverlapping max pooling

— 2z, =max_pooll(y,, ..., ¥,), Z, = max_pool(ys, ..., ¥,.4), ---

> Instead of z, = max_pool(y,,q, ---) Yo), ---



Evaluation

= Simulated 7 Wi-Fi nodes in OPNET Modeler

— 10 distinct flow patterns generated at source

» Mixed with various other flows including RTP/UDP/IP, HTTP, ftp,
interactive DB transactions

= Schemes = B =
~  ARMAX . o
— Naive Bayes Node e
— GMM with K=10 & linear 1-vs-all SVMs
— Proposed baseline )4 ! { | "
wirs @ S e

> 2 layers & linear 1-vs-all SVMs
— Proposed baseline + 3 enhancements
— Implemented in MATLAB

=  Metrics
— Classification recall (true positive rate) and false alarm rate



Flow Patterns and Nodes

Pattern  Flow type

Generative triplet (z,,s,,t,)

fi Constant (2,100,4)
f Constant (2,500,2)
f3 Constant (5,200,5)
fs Constant (10,200, 10)
fs Stochastic (Exp(1), Pareto(100,2), Exp(0.1))
fe Stochastic (Exp(0.5), Pareto(40, 1), Exp(0.25))
f; Stochastic (U(4,10), Pareto(100,2), Exp(0.5))
fg Stochastic (N(10,5), Pareto(40, l) N(10,5))
fo Mixed (1, Pareto(100,2), 1
fio Mixed (1, Pareto(100,2), Exp(0.25))
Node Role Main networking activity
A Flow source  Transmits f;
B Receiver Intercepts flows as Wi-Fi router/AP
C Flow source ~ Transmits f; V j # i
D Flow source ~ Multimedia streaming over RTP/UDP/IP
E Flow dest. HTTP with page size ~ U[10,400] B
F Flow dest. ftp file transfer with size 50000 B
G Flow dest. DB access with inter-arrival ~ Exp(3)sec




Classification Performance
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Burst and Interarrival Prediction Errors

Scheme Origin run size Origin gap size
prediction error prediction error
ARMAX 45.9% 36.7%
Naive Bayes 37.5% 24.6%
(EEA%) 31.3% 18.1%
Proposed 28.3% 16.2%
(baseline)
Proposed 22.8% 11.4%
(enhanced)




Conclusion

= Simply, we have created inverse mapping
— Measured pattern — origin pattern (prequalified)
— This mapping consists of deep feature learner & classifier

= Deep learning

— Start with small features, aggregate up, and broaden
coverage

— Can learn invariances and changes introduced by CSMA
> Arbitrary mix of flows, retransmissions, loss of data

=  Future directions
— Explore other (dis)similarity metrics (e.g., DTW)
— Sparse packet sampling, multiple hops
— Test on real Wi-Fi data
— Other inference applications in networking (e.g., protocols)
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Metrics

True positives
Recall = L b

) True positives + ) False negatives
) False positives

False al =
atse atdrim ) False positives + ) True negatives

For multiple hypothesis testing, false discovery rate (FDR)
could be used instead of false alarm rate

>~ False positives

FDR = >~ False positives + >- True positives




Feature Extraction and Pooling Details

Do long measurement to acquire large
f- multiples of N packet length sequence

Size N
X,

To next layer:

(1+1) = 5 ()
X; Z;

Max pooling
by M




