
Inferring	
 Origin	
 Flow	
 Pa0erns	
 in	
 Wi-­‐Fi	

with	
 Deep	
 Learning	

	
 	
 Youngjune	
 Gwon	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 H.	
 T.	
 Kung	

11th	
 Interna5onal	
 Conference	
 on	
 Autonomic	
 Compu5ng	
 (ICACʹ′14)	

	
 Philadelphia,	
 PA	

	

June	
 18,	
 2014	

§  Introduc5on	

§  Background	

§  Origin	
 flow	
 paMern	
 inference	
 in	
 Wi-­‐Fi	

§  Classical	
 approaches	

§  Our	
 approach	

§  Evalua5on	

§  Conclusion	

Outline	

§  Network	
 traffic	
 analysis	
 is	
 classical	
 research	
 topic	

–  Study,	
 measure,	
 and	
 es5mate	
 flow	
 characteris5cs	

Ø  E.g.,	
 burst	
 size	
 and	
 interarrival	
 5me	
 distribu5ons,	
 mean	
 values	

–  Network	
 nodes	
 (routers)	
 regularly	
 sample	
 packets	

Ø  To	
 provide	
 data	
 used	
 for	
 analysis	

§  Why?	

–  Traffic	
 monitoring	

Ø  Spot	
 anomalies,	
 (D)DoS	
 aMacks,	
 heavy	
 hiMers	

–  Help	
 manage	
 networking	
 resources	

Ø  Wireless	
 spectrum	
 among	
 most	
 precious	
 networking	
 resources	

–  Program	
 network	
 nodes	
 (SDN)	

Ø  Improve	
 Tx-­‐Rx	
 scheduling,	
 interference	
 mi5ga5on	

What	
 Is	
 Network	
 Traffic	
 Inference?	

Flow	
 PaMern	

§  Sequence	
 of	
 data	
 bytes	
 (run)	
 with	
 wai5ng	
 5mes	
 (gap)	

§  Runs-­‐and-­‐gaps	
 model	

–  Flow	
 paMern	
 ⟹	
 !me	
 series	
 data	
 	

Ø  Simple,	
 but	
 powerful	
 abstrac5on	

–  Applicable	
 at	
 any	
 node	
 (src,	
 dst,	
 intermediate)	

similar ideas to force orthonormal dictionary columns as
our two-stage algorithm described in §5.1. However, our
idea of accompanying sparsity relaxation (§5.2) due to
sparse coding with an incoherent dictionary is novel.

1.5 Outline

Section 2 explains the time-series representation and pro-
cessing of a flow. In Section 3, we explore supervised
learning methods for the origin flow inference. Section 4
describes our baseline semi-supervised learning method.
We propose several enhancements to the baseline method
in Section 5 and evaluate the learning methods with a
custom simulator and OPNET in Section 6. The paper
concludes in Section 7.

2 Time-series Representation of Flow

The runs-and-gaps model [13] gives a concise way to de-
scribe a flow. In Figure 2, characteristic patterns of an
example flow are captured by packet runs and gaps mea-
surable over time. As indicated earlier, we perform our
flow measurements directly at the MAC layer rather than
at the transport or IP layers by sampling and processing
Wi-Fi frames.

!"#$%&

'()$&
*+,&-./&

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

-./& *+,& -./& *+,& -./&

Figure 2: Runs-and-gaps model

Let w = [w1 w2 . . . wt . . . wN] be a vector contain-
ing the number of packets in a flow measured over N
time intervals. Here, an important parameter is the unit
interval Ts or sampling period during which each ele-
ment wt is sampled and recorded. The total measurement
time or observation window is N ×Ts. Alternatively, we
have vector x = [x1 x2 . . . xt . . . xN] for w where xt is the
corresponding byte count of the total payload at time t.
Hence, a zero in x (or w) indicates a gap. If w7 = 3 and
x7 = 1,492, we have 3 packets for the flow at t = 7, and
the sum of the payloads from the 3 packets is 1,492 bytes.
We will call either w or x a measurable input vector
for inference, which contains extractable features. While
both w and x carry unique information, we mainly work
with x throughout this paper.

We designate an origin flow (pattern) with another
vector f. Just like x, f is a sequence of byte counts uni-
formly sampled, but the difference is that f reflects the
initial pattern (or signature) originated at its source. Note
f ∈ RM whereas x ∈ RN , and M and N are not necessar-
ily equal. We use notation xi,k to refer kth measurement
on flow i since there can be many measurements on fi.
We also use fi,k to designate the kth instance of origin
flow i because there could be many origin patterns, or
the pattern can be a stochastic process and changes dy-
namically over time. In summary, f,w, and x are all finite
time-series representations of a flow.

Consider sampling and processing of three example
flows in Fig. 3 at a receiver. The receive buffer first times-
tamps each arriving data frame and marks with flow ID.
At t = 1, the received frame for flow 1 contains 2 pack-
ets whose payload sizes are 50 and 50 bytes, denoted in
(2, 50/50B). At t = 6, flow 3 has two received frames.
The first frame contains 2 packets with sizes 100 and 400
bytes whereas the second frame contains only one packet
with 1,000 bytes. The example results in the following:

1. w1 = [2 1 2 0 1 2], x1 = [100 80 110 0 80 100]
2. w2 = [1 0 1 0 1 0], x2 = [600 0 600 0 600 0]
3. w3 = [4 0 0 0 0 3], x3 = [1500 0 0 0 0 1500]
With Ts = 10 msec, each time series take 60 msec to

measure. Flow 1 has 133.3 packets/sec, Flow 2 with
50 packets/sec, and Flow 3 with 116.7 packets/sec. In
bit rates, they are 62.7, 240, and 400 kbps, respectively.

!"!"!#$!%&'(#
)*+,-!,+-'./012!

!"!"!" !"!"!"
#$%&"'"

()*+,-+,./"

#$%&")"
('*0,,./"

#$%&"1"
(2*2,,-2,,-"
2,,-1,,./" #$%&"'"

('*3,./"

#$%&")"
('*0,,./"

#$%&"'"
()*0,-+,./"

#$%&"'"
('*3,./"

#$%&"1"
('*',,,./"

#$%&"'"
()*+,-+,./"

#! 3! 4! 5! 6! 7!

#$%&"1"
()*',,-2,,./"

#$%&")"
('*0,,./"

Figure 3: Time-series processing example

3 Origin Flow Inference with Supervised

Feature Learning

The core of an inference system comprises a feature ex-
tractor (FE) and a classifier (CL) that need to be trained.
Figure 4 describes the supervised learning frame-
work. Supervised learning requires a labeled training
dataset that consists of training examples {x1, . . . ,xT}
with corresponding desired output values (i.e., labels)
{l1, . . . , lT}. There are two mappings, FE : x → y that
maps an input x to its feature y and CL : y → l̂ that per-
forms classification on extracted features of the input.
The inference system learns the mappings FE and CL
from training examples and their labels. Once trained,

3

(per	
 unit	
 interval)	

§  Flow	
 1	

–  w1	
 =	
 [2	
 1	
 2	
 0	
 1	
 2],	
 x1	
 =	
 [100	
 80	
 110	
 0	
 80	
 100]	

§  Flow	
 2	

–  w2	
 =	
 [1	
 0	
 1	
 0	
 1	
 0],	
 x2	
 =	
 [600	
 0	
 600	
 0	
 600	
 0]	

§  Flow	
 3	

–  w3	
 =	
 [4	
 0	
 0	
 0	
 0	
 3],	
 x3	
 =	
 [1500	
 0	
 0	
 0	
 0	
 1500]	

Runs-­‐and-­‐gaps	
 Time	
 Series	
 Processing	

similar ideas to force orthonormal dictionary columns as
our two-stage algorithm described in §5.1. However, our
idea of accompanying sparsity relaxation (§5.2) due to
sparse coding with an incoherent dictionary is novel.

1.5 Outline

Section 2 explains the time-series representation and pro-
cessing of a flow. In Section 3, we explore supervised
learning methods for the origin flow inference. Section 4
describes our baseline semi-supervised learning method.
We propose several enhancements to the baseline method
in Section 5 and evaluate the learning methods with a
custom simulator and OPNET in Section 6. The paper
concludes in Section 7.

2 Time-series Representation of Flow

The runs-and-gaps model [13] gives a concise way to de-
scribe a flow. In Figure 2, characteristic patterns of an
example flow are captured by packet runs and gaps mea-
surable over time. As indicated earlier, we perform our
flow measurements directly at the MAC layer rather than
at the transport or IP layers by sampling and processing
Wi-Fi frames.

!"#$%&

'()$&
*+,&-./&

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

-./& *+,& -./& *+,& -./&

Figure 2: Runs-and-gaps model

Let w = [w1 w2 . . . wt . . . wN] be a vector contain-
ing the number of packets in a flow measured over N
time intervals. Here, an important parameter is the unit
interval Ts or sampling period during which each ele-
ment wt is sampled and recorded. The total measurement
time or observation window is N ×Ts. Alternatively, we
have vector x = [x1 x2 . . . xt . . . xN] for w where xt is the
corresponding byte count of the total payload at time t.
Hence, a zero in x (or w) indicates a gap. If w7 = 3 and
x7 = 1,492, we have 3 packets for the flow at t = 7, and
the sum of the payloads from the 3 packets is 1,492 bytes.
We will call either w or x a measurable input vector
for inference, which contains extractable features. While
both w and x carry unique information, we mainly work
with x throughout this paper.

We designate an origin flow (pattern) with another
vector f. Just like x, f is a sequence of byte counts uni-
formly sampled, but the difference is that f reflects the
initial pattern (or signature) originated at its source. Note
f ∈ RM whereas x ∈ RN , and M and N are not necessar-
ily equal. We use notation xi,k to refer kth measurement
on flow i since there can be many measurements on fi.
We also use fi,k to designate the kth instance of origin
flow i because there could be many origin patterns, or
the pattern can be a stochastic process and changes dy-
namically over time. In summary, f,w, and x are all finite
time-series representations of a flow.

Consider sampling and processing of three example
flows in Fig. 3 at a receiver. The receive buffer first times-
tamps each arriving data frame and marks with flow ID.
At t = 1, the received frame for flow 1 contains 2 pack-
ets whose payload sizes are 50 and 50 bytes, denoted in
(2, 50/50B). At t = 6, flow 3 has two received frames.
The first frame contains 2 packets with sizes 100 and 400
bytes whereas the second frame contains only one packet
with 1,000 bytes. The example results in the following:

1. w1 = [2 1 2 0 1 2], x1 = [100 80 110 0 80 100]
2. w2 = [1 0 1 0 1 0], x2 = [600 0 600 0 600 0]
3. w3 = [4 0 0 0 0 3], x3 = [1500 0 0 0 0 1500]
With Ts = 10 msec, each time series take 60 msec to

measure. Flow 1 has 133.3 packets/sec, Flow 2 with
50 packets/sec, and Flow 3 with 116.7 packets/sec. In
bit rates, they are 62.7, 240, and 400 kbps, respectively.

!"!"!#$!%&'(#
)*+,-!,+-'./012!

!"!"!" !"!"!"
#$%&"'"

()*+,-+,./"

#$%&")"
('*0,,./"

#$%&"1"
(2*2,,-2,,-"
2,,-1,,./" #$%&"'"

('*3,./"

#$%&")"
('*0,,./"

#$%&"'"
()*0,-+,./"

#$%&"'"
('*3,./"

#$%&"1"
('*',,,./"

#$%&"'"
()*+,-+,./"

#! 3! 4! 5! 6! 7!

#$%&"1"
()*',,-2,,./"

#$%&")"
('*0,,./"

Figure 3: Time-series processing example

3 Origin Flow Inference with Supervised

Feature Learning

The core of an inference system comprises a feature ex-
tractor (FE) and a classifier (CL) that need to be trained.
Figure 4 describes the supervised learning frame-
work. Supervised learning requires a labeled training
dataset that consists of training examples {x1, . . . ,xT}
with corresponding desired output values (i.e., labels)
{l1, . . . , lT}. There are two mappings, FE : x → y that
maps an input x to its feature y and CL : y → l̂ that per-
forms classification on extracted features of the input.
The inference system learns the mappings FE and CL
from training examples and their labels. Once trained,

3

Ts	
 =	
 unit	
 interval	

(e.g.,	
 100	
 msec)	
 Note:	
 each	
 flow	
 marked	
 with	
 (#	
 packets,	
 sizes)	

§  Origin	
 flow	
 paMern	
 (f)	

–  Conveys	
 applica5on-­‐level	
 data	
 genera5on	
 context	

–  As	
 entering	
 source	
 Tx	
 buffer	

§  Measured	
 flow	
 paMern	
 (x)	

–  At	
 best,	
 x	
 =	
 ,me-­‐shi1ed	
 f	

–  Reflects	
 severity	
 of	
 conges5on/mix	
 with	
 other	
 flows	

–  As	
 5mestamped	
 at	
 receiver	
 Rx	
 buffer	

Origin	
 Flow	
 PaMern	
 Inference	
 in	
 Wi-­‐Fi	
 (1)	

§  Problem:	
 how	
 to	
 accurately	
 infer	
 origin	
 flow	

paMern	
 fA	
 from	
 received	
 paMern	
 xA|B?	

–  Key	
 challenge:	
 CSMA	
 alters	
 origin	
 paMern	
 by	
 introducing	

complex,	
 irregular	
 mixture	
 of	
 compe5ng	
 flows	

–  BoMomline:	
 mul!class	
 classifica!on	
 problem	

Origin	
 Flow	
 PaMern	
 Inference	
 in	
 Wi-­‐Fi	
 (2)	

§  Supervised	
 learning	

–  ARMAX	

Ø  AR	
 =	
 delayed	
 ground	
 truth	
 paMerns	
 (f)	

Ø  MA	
 =	
 model	
 error	
 (ε)	

Ø  X	
 =	
 delayed	
 received	
 paMerns	
 (x)	

Ø  Train	
 ft	
 =	
 [ft–1	
 ...	
 ft–n	
 xt–1	
 ...	
 xt–m	
 ε]	
 θ	
 with	
 labeled	
 dataset	
 {x(i),	
 <f(i),	
 l(i)>}	

»  Es5mate	
 θ	
 via	
 least	
 squares	
 (recursive	
 LS	
 by	
 Kalman	
 filtering)	

–  Naïve	
 Bayes	
 classifier	

Ø  Using	
 feature	
 y	
 =	
 [μrun	
 μgap]	
 for	
 given	
 x	

Ø  Train	
 p(l|y)	
 ∝	
 p(x|	
 l)	
 from	
 with	
 {x(i),	
 y(i),	
 l(i)}	

§  Semi-­‐supervised	
 learning	

–  Gaussian	
 mixtures	

Ø  Use	
 same	
 feature,	
 bivariate	
 y	
 =	
 [μrun	
 μgap]	
 for	
 given	
 x	

Ø  Train	
 K-­‐Gaussian	
 sum	
 ∼	
 {w,(μ,	
 Σ)}	
 via	
 EM	
 with	
 {x(i),	
 y(i)}	
 (unsupervised)	

»  w	
 =	
 mixing	
 weights,	
 	
 (μ,	
 Σ)	
 =	
 Gaussian	
 parameters	

Ø  Classifica5on:	
 use	
 SVM	
 (supervised)	

»  Train	
 with	
 posterior	
 (membership)	
 probabili5es	
 with	
 {x(i),	
 <f(i),	
 l(i)>}	

Approaches	
 (Classical)	

§  	
 Semi-­‐supervised	
 learning	

–  Phase	
 I:	
 unsupervised	
 feature	
 learning	

1.  Sparse	
 coding	
 &	
 dic5onary	
 learning	
 (unlabeled	
 x’s)	

2.  Subsample	
 features	
 via	
 (max)	
 pooling	

3.  Repeat	
 for	
 mul5ple	
 layers	
 (feed	
 current	
 layer’s	
 result	
 as	

next	
 layer’s	
 input)	

–  Phase	
 II:	
 supervised	
 classifier	
 training	
 	

1.  Do	
 mul5-­‐layer	
 sparse	
 coding	
 and	
 pooling	
 with	
 labeled	
 x’s	

2.  Train	
 SVM	
 classifiers	
 with	
 final	
 feature	
 vector	
 resulted	
 at	

top	

Our	
 Approach	

Mul5-­‐layer	
 Feature	
 Learning	
 and	
 SVM	
 Classifica5on	

f-­‐ext	

(OMP	
 &	
 K-­‐SVD)	

subsample	

(Max	
 pool)	

x(1)	

y(1)	

x(2)	
 =	
 z(1)	

f-­‐ext	

(OMP	
 &	
 K-­‐SVD)	

subsample	

(Max	
 pool)	

y(2)	

x(3)	
 =	
 z(2)	

f-­‐ext	

(OMP	
 &	
 K-­‐SVD)	

subsample	

(Max	
 pool)	

y(L)	

z(L)	

. 	
 . 	

.	

(received	
 runs-­‐and-­‐gaps	
 5me	
 series)	

Layer	
 1	

Layer	
 2	

Layer	
 L	
 CSMA	
 spreads	
 flow	
 invariances	
 (some	

preserved	
 original	
 run	
 lengths)	
 over	
 	

long	
 period	
 ⟹	
 feature	
 learning	
 &	

pooling	
 over	
 mul5ple	
 layers	
 iden5fy	

such	
 invariances	

z(L)	

SVM	
 classifier	

x(L)	
 =	
 z(L–1)	

§  Describe	
 input	
 x	
 as	
 M	
 linear	
 combina5on	
 of	
 D’s	
 columns	

§  x	
 =	
 D	
 y	
 	
 	

–  x	
 =	
 measured	
 flow	
 paMern	

–  y	
 =	
 extracted	
 feature	
 from	
 x	

–  OMP	
 computes	
 y	
 &	
 K-­‐SVD	
 trains	
 D	

Ø  min	
 ǁX	
 –	
 DYǁF2	
 	
 s.t.	
 	
 ǁykǁ0	
 ≤	
 M	
 ∀k	
 	

–  Sparsity:	
 M	
 <<	
 N	
 <	
 K	

§  Sparse	
 coding,	
 clustering,	
 and	
 mixtures	
 are	
 fundamentally	

same	
 idea	

What	
 Is	
 Sparse	
 Coding?	

D

What	
 Is	
 Max	
 Pooling?	

§  What	
 do	
 we	
 do	
 when	
 we	
 have	
 too	
 many	
 of	
 same	
 kinds?	

–  Need	
 to	
 summarize	
 over	
 them	

§  Max	
 pooling	

–  Transla5on-­‐invariant	
 subsampling	
 of	
 mul5ple	
 feature	
 vectors	

–  Popular	
 in	
 CNN	
 for	
 image	
 recogni5on	

Summarizing	
 Deep	
 Feature	
 Learning	

.	
 .	
 .	
 xk	

Incoming	
 measurements	

§  Incoherent	
 dic5onary	
 atoms	

–  Force:	
 ǁDT

	
 D	
 ǁ	
 =	
 I	
 with	
 new	
 constraint	

Ø  min	
 ǁX	
 –	
 DYǁF2	
 +	
 γ	
 ǁDT

	
 D	
 	
 –	
 IǁF2	
 	
 s.t.	
 	
 ǁykǁ0	
 ≤	
 Mʹ′	
 ∀k	
 	

§  Relax	
 sparsity	
 due	
 to	
 distor5ons	
 resulted	
 by	

incoherent	
 dic5onary	
 training	

–  Use	
 Mʹ′	
 >	
 M	
 for	
 OMP	

§  Overlapping	
 max	
 pooling	

–  z1	
 =	
 max_pool(y1,	
 ...,	
 yL),	
 z2	
 =	
 max_pool(y5,	
 ...,	
 yL+4),	
 ...	

Ø  Instead	
 of	
 z2	
 =	
 max_pool(yL+1,	
 ...,	
 y2L),	
 ...	
 	

Enhancements	

Evalua5on	

§  Simulated	
 7	
 Wi-­‐Fi	
 nodes	
 in	
 OPNET	
 Modeler	

–  10	
 dis5nct	
 flow	
 paMerns	
 generated	
 at	
 source	

Ø  Mixed	
 with	
 various	
 other	
 flows	
 including	
 RTP/UDP/IP,	
 HTTP,	
 {p,	

interac5ve	
 DB	
 transac5ons	

§  Schemes	

–  ARMAX	

–  Naïve	
 Bayes	

–  GMM	
 with	
 K	
 =	
 10	
 &	
 linear	
 1-­‐vs-­‐all	
 SVMs	

–  Proposed	
 baseline	

Ø  2	
 layers	
 &	
 linear	
 1-­‐vs-­‐all	
 SVMs	

–  Proposed	
 baseline	
 +	
 3	
 enhancements	

–  Implemented	
 in	
 MATLAB	

§  Metrics	

–  Classifica5on	
 recall	
 (true	
 posi5ve	
 rate)	
 and	
 false	
 alarm	
 rate	

Flow	
 PaMerns	
 and	
 Nodes	

Classifica5on	
 Performance	

Burst	
 and	
 Interarrival	
 Predic5on	
 Errors	

Scheme	
 Origin	
 run	
 size	

predicVon	
 error	

Origin	
 gap	
 size	

predicVon	
 error	

ARMAX	
 45.9%	
 36.7%	

Naïve	
 Bayes	
 37.5%	
 24.6%	

GMM	

(K	
 =	
 10)	
 31.3%	
 18.1%	

Proposed	

(baseline)	
 28.3%	
 16.2%	

Proposed	

(enhanced)	
 22.8%	
 11.4%	

§  Simply,	
 we	
 have	
 created	
 inverse	
 mapping	

–  Measured	
 paMern	
 ⟶	
 origin	
 paMern	
 (prequalified)	

–  This	
 mapping	
 consists	
 of	
 deep	
 feature	
 learner	
 &	
 classifier	

§  Deep	
 learning	

–  Start	
 with	
 small	
 features,	
 aggregate	
 up,	
 and	
 broaden	

coverage	

–  Can	
 learn	
 invariances	
 and	
 changes	
 introduced	
 by	
 CSMA	
 	

Ø  Arbitrary	
 mix	
 of	
 flows,	
 retransmissions,	
 loss	
 of	
 data	

§  Future	
 direc5ons	

–  Explore	
 other	
 (dis)similarity	
 metrics	
 (e.g.,	
 DTW)	

–  Sparse	
 packet	
 sampling,	
 mul5ple	
 hops	

–  Test	
 on	
 real	
 Wi-­‐Fi	
 data	

–  Other	
 inference	
 applica5ons	
 in	
 networking	
 (e.g.,	
 protocols)	

Conclusion	

Backup	
 Slides	

Metrics	

Table 1: Origin flows used for evaluation

Flow Type Generative triplet �tr,sr, tg�
Flow 1 Constant �2,100,4�
Flow 2 Constant �2,500,2�
Flow 3 Constant �5,200,5�
Flow 4 Constant �10,200,10�
Flow 5 Stochastic �Exp(1), Pareto(100,2), Exp(0.1)�
Flow 6 Stochastic �Exp(0.5), Pareto(40,1), Exp(0.25)�
Flow 7 Stochastic �U(4,10), Pareto(100,2), Exp(0.5)�
Flow 8 Stochastic �N(10,5), Pareto(40,1), N(10,5)�
Flow 9 Mixed �1, Pareto(100,2), 1�
Flow 10 Mixed �1, Pareto(100,2), Exp(0.25)�

of 500 elements.

6.1.2 Preprocessing generated origin flow patterns

We precompute the mean run and gap lengths from the

generated origin flow patterns in the training dataset.

This is convenient because we enable simple lookup

(of the precomputed values) based on the classifi-

cation result of a measured flow in order to esti-

mate the origin run and gap properties. In Figure 8,

we have
�
s1

1
s1

2
0 0 0 s2

1
0 0 0 0 0 s3

1
s3

2
s3

3
0 0 . . .

�
, where

s1 = ∑2

k=1
s1

k , s2 = ∑1

k=1
s2

k , s3 = ∑3

k=1
s3

k give total bytes

of the three bursts. We can then compute the mean burst

size for this pattern. We also compute {t1
r , t2

r , t3
r , . . .},

{t1
g , t2

g , t3
g , . . .}, and their mean values.

!"!"!#$!%&'(#
)*+,-!,+-'./012!

$#

!"!" !"#"

!"$"

!#!" !##" !#$"
%"%"%"

$!" $#"
$$"

Figure 8: Computing generated flow statistics

6.1.3 Evaluation metrics

We are foremost interested in the accuracy of classifying

a measured pattern x to its ground-truth origin flow pat-

tern f. We compute two metrics, recall (true positive rate)

and false alarm (false positive rate), to evaluate classifi-

cation performance:

Recall = ∑True positives

∑True positives + ∑False negatives

False alarm =
∑False positives

∑False positives + ∑True negatives

Without false alarm rate, we cannot truly assess the

probability of detection for a classifier using a computed

recall value because the classifier can be configured to

declare positive only, automatically achieving to guess

all positives correctly. Classification leads to inferring

Table 2: Wi-Fi parameter configuration for Scenario 1

Parameter Description Value

aSlotTime Slot time 20 µsec

aSIFSTime Short interframe space (SIFS) 10 µsec

aDIFSTime DCF interframe space (DIFS) 50 µsec

aCWmin Min contention window size 15 slots

aCWmax Max contention window size 1023 slots

tPLCPPreamble PLCP preamble duration 16 µsec

tPLCP SIG PLCP SIGNAL field duration 4 µsec

tSymbol OFDM symbol duration 4 µsec

other important properties of a flow from its training

dataset records. As our secondary evaluation metrics, we

calculate errors in estimating the original mean burst size

and mean gap length of the flow.

6.2 Scenario 1: Three Wi-Fi Nodes
Figure 9 depicts Scenario 1. In this simple scenario, we

infer the origin time series fA sent by source node A, us-

ing xA|B measured at receiver node B. Node C, another

source, contends with node A by transmitting its own

flow fC. We carry out cross-validation with all 10 flow

datasets by setting fA = fi ∀i ∈ {1, . . . ,10}, flow by flow

at once. When fA = fi, we randomly set fC = f j ∀ j �= i.
Node C can change its flow pattern from f j to fk, while

node A still running fi, but fk is chosen such that k �= i.

Figure 9: Scenario 1

Wi-Fi setup. We have implemented a custom discrete-

event simulator in MATLAB, assuming the IEEE

802.11g our baseline Wi-Fi system. At its core, our

CSMA implementation is based on an open-source wire-

less simulator [2]. The backoff mechanism works as

follows. The contention window CW is initialized to

aCWmin. In case of timeout, CSMA doubles CW, other-

wise waits until the channel becomes idle with an ad-

ditional DCF interframe space (DIFS) duration. CSMA

chooses a uniformly random wait time between [1, CW].

CW can grow up to aCWmax of 1,023 slots. CW is decre-

mented only when the media is sensed idle. RTS and

CTS are disabled. The Wi-Fi configuration is summa-

rized in Table 2.

Inference schemes. We have implemented all of the

inference schemes in MATLAB. We consider ARMAX-

8

For	
 mul5ple	
 hypothesis	
 tes5ng,	
 false	
 discovery	
 rate	
 (FDR)	
 	

could	
 be	
 used	
 instead	
 of	
 false	
 alarm	
 rate	
 	

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

OMP/K−SVD 3−grams ED/K−means DTW/K−medoids 2/3/4−grams
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall (single layer)
FDR (single layer)
Recall (128−bit padding)
FDR (128−bit padding)

Figure 6: Single-layer feature learning. 1-vs-all classi-
fication recall and FDR for language identification

OMP/K−SVD 3−grams ED/K−means DTW/K−medoids 2/3/4−grams
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall (2 layers)
FDR (2 layers)
Recall (128−bit padding)
FDR (128−bit padding)

Figure 7: Two-layer deep feature learning. 1-vs-all
classification recall and FDR for language identification

Each datapoint is a vector of 1,000 elements constituting the encrypted payload-length time series
(measured in bytes), acquired from approximately 30 sec speech of one speaker.

Implementation. We have implemented the proposed deep feature learning and classification
system in MATLAB. We use Technion’s open-source OMP (v10) and K-SVD (v13) implemen-
tations [28] and LIBSVM [17]. We have written our own DTW module and K-medoids based on
it. We consider the SRTP default, length-preserving AES encryption in counter mode. We will later
show the impact of padding to a cipher block size on classification accuracy. We train mainly 1-vs-all
SVM classifiers. For comparison to Wright et al. [31], we also train 1-vs-1 classifiers selectively.

Classification accuracy metrics. To evaluate the accuracy performance of our classifiers, we com-
pute recall (true positive rate) and either false discovery rate (FDR) or false positive rate (FPR):
Recall =

�True positives
�True positives+

�False negatives , FDR =
�False positives

�False positives+
�True positives , and

FPR =
�False positives

�False positives+
�True negatives . We use FDR for 1-vs-all classifiers. Because we have

21 classes for the 22 Language dataset and 24 classes (including American English accent) for FAE,
the total number of negatives tends to be much larger than the number of positives when testing each
1-vs-all classifier against all samples in the test dataset. This makes FPR unfairly small for 1-vs-all,
thus FDR should be preferred. We compute FPR for 1-vs-1 classifiers.

Single layer analysis. We compare the performance of numerous L1 f-ext choices in a single layer
configuration: 1) OMP sparse coder & K-SVD (§4.2); 2) 3-grams (§4.2); 3) ED coder & K-means
clustering (§5.1); 4) DTW coder & K-medoids clustering (§5.1); 5) simultaneous 2/3/4-grams (§5.2).
We do max pooling by m = 10 on the L1 f-ext output vectors before applying to linear SVM
classifiers. We input each datapoint (∈ R1,000) in a training dataset as a stream from which xk ∈ RN

are formed as in Figure 4, using relatively short N = 64 (i.e., about 3.2 sec-long speech fragment).
There is an overlap τ = 0.2 · N between consecutive xk’s. We use K = 100 (dictionary atoms or
clusters) for each of 21 classes in the language identification problem, the concatenated dictionary
would have 2,100 atoms. We regularize OMP, ED, and DTW coders by setting P = 50 < K.

n-grams are a great choice for the high-performance L1 f-ext. However, there is a crucial drawback
for practical uses. We have observed that 22 Language dataset incurs 137 different voice payload
sizes in the Opus VBR coding (for FAE dataset, we find 98 different payload lengths), making the
unigram space size |S1| = 137. If we were to generate 2-, 3-, and 4-gram tables exhaustively, we
would face |S2| = 18, 769, |S3| ≈ 2.5 million, and |S4| ≈ 352 million. So we had to reduce the
4-gram table to popular thousands, 3-grams to a few thousands, and so forth. Still, the feature vector
with n-gram embedding has a huge dimensionality compared to other L1 f-ext choices.

Figure 6 shows the average recall and FDR of 1-vs-all classification for language identification (with
22 Language dataset) based on the single layer feature extraction with a specified L1 f-ext over the
horizontal axis. For single layer, the accuracy performance of the proposed DTW coder is very close
to simultaneous 2/3/4-grams. DTW-based single layer results in a better recall, but induces more
false positives by having a higher FDR. As expected, DTW performs superior over ED in clustering
and matching time series data.

Language identification. We have been able to improve the classification performance by adding
one more layer. At layer 2, the OMP sparse coder takes in the pooled DTW-based feature vectors of
layer 1. We use overlapping max pooling at layer 2. Figure 8 presents the complete confusion matrix

7

Feature	
 Extrac5on	
 and	
 Pooling	
 Details	

Do	
 long	
 measurement	
 to	
 acquire	
 large	
 	

mulVples	
 of	
 N	
 packet	
 length	
 sequence	

x1	
 Size	
 N	

x2	

x3	
 ...	

y1	
 y2	
 y3	
 yM	

...	
 ...	

z1	

Max	
 pooling	
 	

by	
 M	

z1,i	
 =	
 max(y1,i,	
 ...,	
 yM,i)	

To	
 next	
 layer:	

	

xj(I+1)	
 =	
 zj(I)	

	

τ	

