
Inferring	
  Origin	
  Flow	
  Pa0erns	
  in	
  Wi-­‐Fi	
  
with	
  Deep	
  Learning	
  

	
  	
  Youngjune	
  Gwon	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  H.	
  T.	
  Kung	
  

11th	
  Interna5onal	
  Conference	
  on	
  Autonomic	
  Compu5ng	
  (ICACʹ′14)	
  

	
  Philadelphia,	
  PA	
  
	
  

June	
  18,	
  2014	
  



§  Introduc5on	
  
§  Background	
  
§  Origin	
  flow	
  paMern	
  inference	
  in	
  Wi-­‐Fi	
  
§  Classical	
  approaches	
  
§  Our	
  approach	
  
§  Evalua5on	
  
§  Conclusion	
  

Outline	
  



§  Network	
  traffic	
  analysis	
  is	
  classical	
  research	
  topic	
  
–  Study,	
  measure,	
  and	
  es5mate	
  flow	
  characteris5cs	
  

Ø  E.g.,	
  burst	
  size	
  and	
  interarrival	
  5me	
  distribu5ons,	
  mean	
  values	
  
–  Network	
  nodes	
  (routers)	
  regularly	
  sample	
  packets	
  

Ø  To	
  provide	
  data	
  used	
  for	
  analysis	
  

§  Why?	
  
–  Traffic	
  monitoring	
  

Ø  Spot	
  anomalies,	
  (D)DoS	
  aMacks,	
  heavy	
  hiMers	
  
–  Help	
  manage	
  networking	
  resources	
  

Ø  Wireless	
  spectrum	
  among	
  most	
  precious	
  networking	
  resources	
  
–  Program	
  network	
  nodes	
  (SDN)	
  

Ø  Improve	
  Tx-­‐Rx	
  scheduling,	
  interference	
  mi5ga5on	
  

What	
  Is	
  Network	
  Traffic	
  Inference?	
  



Flow	
  PaMern	
  
§  Sequence	
  of	
  data	
  bytes	
  (run)	
  with	
  wai5ng	
  5mes	
  (gap)	
  
§  Runs-­‐and-­‐gaps	
  model	
  

–  Flow	
  paMern	
  ⟹	
  !me	
  series	
  data	
  	
  
Ø  Simple,	
  but	
  powerful	
  abstrac5on	
  

–  Applicable	
  at	
  any	
  node	
  (src,	
  dst,	
  intermediate)	
  

similar ideas to force orthonormal dictionary columns as
our two-stage algorithm described in §5.1. However, our
idea of accompanying sparsity relaxation (§5.2) due to
sparse coding with an incoherent dictionary is novel.

1.5 Outline

Section 2 explains the time-series representation and pro-
cessing of a flow. In Section 3, we explore supervised
learning methods for the origin flow inference. Section 4
describes our baseline semi-supervised learning method.
We propose several enhancements to the baseline method
in Section 5 and evaluate the learning methods with a
custom simulator and OPNET in Section 6. The paper
concludes in Section 7.

2 Time-series Representation of Flow

The runs-and-gaps model [13] gives a concise way to de-
scribe a flow. In Figure 2, characteristic patterns of an
example flow are captured by packet runs and gaps mea-
surable over time. As indicated earlier, we perform our
flow measurements directly at the MAC layer rather than
at the transport or IP layers by sampling and processing
Wi-Fi frames.
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Figure 2: Runs-and-gaps model

Let w = [w1 w2 . . . wt . . . wN ] be a vector contain-
ing the number of packets in a flow measured over N
time intervals. Here, an important parameter is the unit
interval Ts or sampling period during which each ele-
ment wt is sampled and recorded. The total measurement
time or observation window is N ×Ts. Alternatively, we
have vector x = [x1 x2 . . . xt . . . xN ] for w where xt is the
corresponding byte count of the total payload at time t.
Hence, a zero in x (or w) indicates a gap. If w7 = 3 and
x7 = 1,492, we have 3 packets for the flow at t = 7, and
the sum of the payloads from the 3 packets is 1,492 bytes.
We will call either w or x a measurable input vector
for inference, which contains extractable features. While
both w and x carry unique information, we mainly work
with x throughout this paper.

We designate an origin flow (pattern) with another
vector f. Just like x, f is a sequence of byte counts uni-
formly sampled, but the difference is that f reflects the
initial pattern (or signature) originated at its source. Note
f ∈ RM whereas x ∈ RN , and M and N are not necessar-
ily equal. We use notation xi,k to refer kth measurement
on flow i since there can be many measurements on fi.
We also use fi,k to designate the kth instance of origin
flow i because there could be many origin patterns, or
the pattern can be a stochastic process and changes dy-
namically over time. In summary, f,w, and x are all finite
time-series representations of a flow.

Consider sampling and processing of three example
flows in Fig. 3 at a receiver. The receive buffer first times-
tamps each arriving data frame and marks with flow ID.
At t = 1, the received frame for flow 1 contains 2 pack-
ets whose payload sizes are 50 and 50 bytes, denoted in
(2, 50/50B). At t = 6, flow 3 has two received frames.
The first frame contains 2 packets with sizes 100 and 400
bytes whereas the second frame contains only one packet
with 1,000 bytes. The example results in the following:

1. w1 = [2 1 2 0 1 2], x1 = [100 80 110 0 80 100]
2. w2 = [1 0 1 0 1 0], x2 = [600 0 600 0 600 0]
3. w3 = [4 0 0 0 0 3], x3 = [1500 0 0 0 0 1500]
With Ts = 10 msec, each time series take 60 msec to

measure. Flow 1 has 133.3 packets/sec, Flow 2 with
50 packets/sec, and Flow 3 with 116.7 packets/sec. In
bit rates, they are 62.7, 240, and 400 kbps, respectively.
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Figure 3: Time-series processing example

3 Origin Flow Inference with Supervised

Feature Learning

The core of an inference system comprises a feature ex-
tractor (FE) and a classifier (CL) that need to be trained.
Figure 4 describes the supervised learning frame-
work. Supervised learning requires a labeled training
dataset that consists of training examples {x1, . . . ,xT}
with corresponding desired output values (i.e., labels)
{l1, . . . , lT}. There are two mappings, FE : x → y that
maps an input x to its feature y and CL : y → l̂ that per-
forms classification on extracted features of the input.
The inference system learns the mappings FE and CL
from training examples and their labels. Once trained,

3

(per	
  unit	
  interval)	
  



§  Flow	
  1	
  
–  w1	
  =	
  [2	
  1	
  2	
  0	
  1	
  2],	
  x1	
  =	
  [100	
  80	
  110	
  0	
  80	
  100]	
  

§  Flow	
  2	
  
–  w2	
  =	
  [1	
  0	
  1	
  0	
  1	
  0],	
  x2	
  =	
  [600	
  0	
  600	
  0	
  600	
  0]	
  

§  Flow	
  3	
  
–  w3	
  =	
  [4	
  0	
  0	
  0	
  0	
  3],	
  x3	
  =	
  [1500	
  0	
  0	
  0	
  0	
  1500]	
  

Runs-­‐and-­‐gaps	
  Time	
  Series	
  Processing	
  

similar ideas to force orthonormal dictionary columns as
our two-stage algorithm described in §5.1. However, our
idea of accompanying sparsity relaxation (§5.2) due to
sparse coding with an incoherent dictionary is novel.

1.5 Outline

Section 2 explains the time-series representation and pro-
cessing of a flow. In Section 3, we explore supervised
learning methods for the origin flow inference. Section 4
describes our baseline semi-supervised learning method.
We propose several enhancements to the baseline method
in Section 5 and evaluate the learning methods with a
custom simulator and OPNET in Section 6. The paper
concludes in Section 7.

2 Time-series Representation of Flow

The runs-and-gaps model [13] gives a concise way to de-
scribe a flow. In Figure 2, characteristic patterns of an
example flow are captured by packet runs and gaps mea-
surable over time. As indicated earlier, we perform our
flow measurements directly at the MAC layer rather than
at the transport or IP layers by sampling and processing
Wi-Fi frames.
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Let w = [w1 w2 . . . wt . . . wN ] be a vector contain-
ing the number of packets in a flow measured over N
time intervals. Here, an important parameter is the unit
interval Ts or sampling period during which each ele-
ment wt is sampled and recorded. The total measurement
time or observation window is N ×Ts. Alternatively, we
have vector x = [x1 x2 . . . xt . . . xN ] for w where xt is the
corresponding byte count of the total payload at time t.
Hence, a zero in x (or w) indicates a gap. If w7 = 3 and
x7 = 1,492, we have 3 packets for the flow at t = 7, and
the sum of the payloads from the 3 packets is 1,492 bytes.
We will call either w or x a measurable input vector
for inference, which contains extractable features. While
both w and x carry unique information, we mainly work
with x throughout this paper.

We designate an origin flow (pattern) with another
vector f. Just like x, f is a sequence of byte counts uni-
formly sampled, but the difference is that f reflects the
initial pattern (or signature) originated at its source. Note
f ∈ RM whereas x ∈ RN , and M and N are not necessar-
ily equal. We use notation xi,k to refer kth measurement
on flow i since there can be many measurements on fi.
We also use fi,k to designate the kth instance of origin
flow i because there could be many origin patterns, or
the pattern can be a stochastic process and changes dy-
namically over time. In summary, f,w, and x are all finite
time-series representations of a flow.

Consider sampling and processing of three example
flows in Fig. 3 at a receiver. The receive buffer first times-
tamps each arriving data frame and marks with flow ID.
At t = 1, the received frame for flow 1 contains 2 pack-
ets whose payload sizes are 50 and 50 bytes, denoted in
(2, 50/50B). At t = 6, flow 3 has two received frames.
The first frame contains 2 packets with sizes 100 and 400
bytes whereas the second frame contains only one packet
with 1,000 bytes. The example results in the following:

1. w1 = [2 1 2 0 1 2], x1 = [100 80 110 0 80 100]
2. w2 = [1 0 1 0 1 0], x2 = [600 0 600 0 600 0]
3. w3 = [4 0 0 0 0 3], x3 = [1500 0 0 0 0 1500]
With Ts = 10 msec, each time series take 60 msec to

measure. Flow 1 has 133.3 packets/sec, Flow 2 with
50 packets/sec, and Flow 3 with 116.7 packets/sec. In
bit rates, they are 62.7, 240, and 400 kbps, respectively.
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Figure 3: Time-series processing example

3 Origin Flow Inference with Supervised

Feature Learning

The core of an inference system comprises a feature ex-
tractor (FE) and a classifier (CL) that need to be trained.
Figure 4 describes the supervised learning frame-
work. Supervised learning requires a labeled training
dataset that consists of training examples {x1, . . . ,xT}
with corresponding desired output values (i.e., labels)
{l1, . . . , lT}. There are two mappings, FE : x → y that
maps an input x to its feature y and CL : y → l̂ that per-
forms classification on extracted features of the input.
The inference system learns the mappings FE and CL
from training examples and their labels. Once trained,

3

Ts	
  =	
  unit	
  interval	
  
(e.g.,	
  100	
  msec)	
   Note:	
  each	
  flow	
  marked	
  with	
  (#	
  packets,	
  sizes)	
  



§  Origin	
  flow	
  paMern	
  (f)	
  
–  Conveys	
  applica5on-­‐level	
  data	
  genera5on	
  context	
  
–  As	
  entering	
  source	
  Tx	
  buffer	
  

§  Measured	
  flow	
  paMern	
  (x)	
  
–  At	
  best,	
  x	
  =	
  ,me-­‐shi1ed	
  f	
  
–  Reflects	
  severity	
  of	
  conges5on/mix	
  with	
  other	
  flows	
  
–  As	
  5mestamped	
  at	
  receiver	
  Rx	
  buffer	
  

Origin	
  Flow	
  PaMern	
  Inference	
  in	
  Wi-­‐Fi	
  (1)	
  



§  Problem:	
  how	
  to	
  accurately	
  infer	
  origin	
  flow	
  
paMern	
  fA	
  from	
  received	
  paMern	
  xA|B?	
  
–  Key	
  challenge:	
  CSMA	
  alters	
  origin	
  paMern	
  by	
  introducing	
  

complex,	
  irregular	
  mixture	
  of	
  compe5ng	
  flows	
  
–  BoMomline:	
  mul!class	
  classifica!on	
  problem	
  

Origin	
  Flow	
  PaMern	
  Inference	
  in	
  Wi-­‐Fi	
  (2)	
  



§  Supervised	
  learning	
  
–  ARMAX	
  

Ø  AR	
  =	
  delayed	
  ground	
  truth	
  paMerns	
  (f)	
  
Ø  MA	
  =	
  model	
  error	
  (ε)	
  
Ø  X	
  =	
  delayed	
  received	
  paMerns	
  (x)	
  
Ø  Train	
  ft	
  =	
  [ft–1	
  ...	
  ft–n	
  xt–1	
  ...	
  xt–m	
  ε]	
  θ	
  with	
  labeled	
  dataset	
  {x(i),	
  <f(i),	
  l(i)>}	
  

»  Es5mate	
  θ	
  via	
  least	
  squares	
  (recursive	
  LS	
  by	
  Kalman	
  filtering)	
  

–  Naïve	
  Bayes	
  classifier	
  
Ø  Using	
  feature	
  y	
  =	
  [μrun	
  μgap]	
  for	
  given	
  x	
  
Ø  Train	
  p(l|y)	
  ∝	
  p(x|	
  l)	
  from	
  with	
  {x(i),	
  y(i),	
  l(i)}	
  

§  Semi-­‐supervised	
  learning	
  
–  Gaussian	
  mixtures	
  

Ø  Use	
  same	
  feature,	
  bivariate	
  y	
  =	
  [μrun	
  μgap]	
  for	
  given	
  x	
  
Ø  Train	
  K-­‐Gaussian	
  sum	
  ∼	
  {w,(μ,	
  Σ)}	
  via	
  EM	
  with	
  {x(i),	
  y(i)}	
  (unsupervised)	
  

»  w	
  =	
  mixing	
  weights,	
  	
  (μ,	
  Σ)	
  =	
  Gaussian	
  parameters	
  
Ø  Classifica5on:	
  use	
  SVM	
  (supervised)	
  

»  Train	
  with	
  posterior	
  (membership)	
  probabili5es	
  with	
  {x(i),	
  <f(i),	
  l(i)>}	
  

Approaches	
  (Classical)	
  



§  	
  Semi-­‐supervised	
  learning	
  
–  Phase	
  I:	
  unsupervised	
  feature	
  learning	
  

1.  Sparse	
  coding	
  &	
  dic5onary	
  learning	
  (unlabeled	
  x’s)	
  
2.  Subsample	
  features	
  via	
  (max)	
  pooling	
  
3.  Repeat	
  for	
  mul5ple	
  layers	
  (feed	
  current	
  layer’s	
  result	
  as	
  

next	
  layer’s	
  input)	
  

–  Phase	
  II:	
  supervised	
  classifier	
  training	
  	
  
1.  Do	
  mul5-­‐layer	
  sparse	
  coding	
  and	
  pooling	
  with	
  labeled	
  x’s	
  
2.  Train	
  SVM	
  classifiers	
  with	
  final	
  feature	
  vector	
  resulted	
  at	
  

top	
  

Our	
  Approach	
  



Mul5-­‐layer	
  Feature	
  Learning	
  and	
  SVM	
  Classifica5on	
  

f-­‐ext	
  
(OMP	
  &	
  K-­‐SVD)	
  

subsample	
  
(Max	
  pool)	
  

x(1)	
  

y(1)	
  
x(2)	
  =	
  z(1)	
  

f-­‐ext	
  
(OMP	
  &	
  K-­‐SVD)	
  

subsample	
  
(Max	
  pool)	
  

y(2)	
  
x(3)	
  =	
  z(2)	
  

f-­‐ext	
  
(OMP	
  &	
  K-­‐SVD)	
  

subsample	
  
(Max	
  pool)	
  

y(L)	
  
z(L)	
  

. 	
  . 	
  
.	
  

(received	
  runs-­‐and-­‐gaps	
  5me	
  series)	
  

Layer	
  1	
  

Layer	
  2	
  

Layer	
  L	
  CSMA	
  spreads	
  flow	
  invariances	
  (some	
  
preserved	
  original	
  run	
  lengths)	
  over	
  	
  
long	
  period	
  ⟹	
  feature	
  learning	
  &	
  
pooling	
  over	
  mul5ple	
  layers	
  iden5fy	
  
such	
  invariances	
  

z(L)	
  

SVM	
  classifier	
  

x(L)	
  =	
  z(L–1)	
  



§  Describe	
  input	
  x	
  as	
  M	
  linear	
  combina5on	
  of	
  D’s	
  columns	
  
§  x	
  =	
  D	
  y	
  	
  	
  

–  x	
  =	
  measured	
  flow	
  paMern	
  
–  y	
  =	
  extracted	
  feature	
  from	
  x	
  
–  OMP	
  computes	
  y	
  &	
  K-­‐SVD	
  trains	
  D	
  

Ø  min	
  ǁX	
  –	
  DYǁF2	
  	
  s.t.	
  	
  ǁykǁ0	
  ≤	
  M	
  ∀k	
  	
  
–  Sparsity:	
  M	
  <<	
  N	
  <	
  K	
  

§  Sparse	
  coding,	
  clustering,	
  and	
  mixtures	
  are	
  fundamentally	
  
same	
  idea	
  

What	
  Is	
  Sparse	
  Coding?	
  

D 



What	
  Is	
  Max	
  Pooling?	
  

§  What	
  do	
  we	
  do	
  when	
  we	
  have	
  too	
  many	
  of	
  same	
  kinds?	
  
–  Need	
  to	
  summarize	
  over	
  them	
  

§  Max	
  pooling	
  
–  Transla5on-­‐invariant	
  subsampling	
  of	
  mul5ple	
  feature	
  vectors	
  
–  Popular	
  in	
  CNN	
  for	
  image	
  recogni5on	
  



Summarizing	
  Deep	
  Feature	
  Learning	
  

.	
  .	
  .	
   xk	
  

Incoming	
  measurements	
  



§  Incoherent	
  dic5onary	
  atoms	
  
–  Force:	
  ǁDT

	
  D	
  ǁ	
  =	
  I	
  with	
  new	
  constraint	
  
Ø  min	
  ǁX	
  –	
  DYǁF2	
  +	
  γ	
  ǁDT

	
  D	
  	
  –	
  IǁF2	
  	
  s.t.	
  	
  ǁykǁ0	
  ≤	
  Mʹ′	
  ∀k	
  	
  

§  Relax	
  sparsity	
  due	
  to	
  distor5ons	
  resulted	
  by	
  
incoherent	
  dic5onary	
  training	
  
–  Use	
  Mʹ′	
  >	
  M	
  for	
  OMP	
  

§  Overlapping	
  max	
  pooling	
  
–  z1	
  =	
  max_pool(y1,	
  ...,	
  yL),	
  z2	
  =	
  max_pool(y5,	
  ...,	
  yL+4),	
  ...	
  

Ø  Instead	
  of	
  z2	
  =	
  max_pool(yL+1,	
  ...,	
  y2L),	
  ...	
  	
  

Enhancements	
  



Evalua5on	
  
§  Simulated	
  7	
  Wi-­‐Fi	
  nodes	
  in	
  OPNET	
  Modeler	
  

–  10	
  dis5nct	
  flow	
  paMerns	
  generated	
  at	
  source	
  
Ø  Mixed	
  with	
  various	
  other	
  flows	
  including	
  RTP/UDP/IP,	
  HTTP,	
  {p,	
  

interac5ve	
  DB	
  transac5ons	
  

§  Schemes	
  
–  ARMAX	
  
–  Naïve	
  Bayes	
  
–  GMM	
  with	
  K	
  =	
  10	
  &	
  linear	
  1-­‐vs-­‐all	
  SVMs	
  
–  Proposed	
  baseline	
  

Ø  2	
  layers	
  &	
  linear	
  1-­‐vs-­‐all	
  SVMs	
  
–  Proposed	
  baseline	
  +	
  3	
  enhancements	
  
–  Implemented	
  in	
  MATLAB	
  

§  Metrics	
  
–  Classifica5on	
  recall	
  (true	
  posi5ve	
  rate)	
  and	
  false	
  alarm	
  rate	
  



Flow	
  PaMerns	
  and	
  Nodes	
  



Classifica5on	
  Performance	
  



Burst	
  and	
  Interarrival	
  Predic5on	
  Errors	
  

Scheme	
   Origin	
  run	
  size	
  
predicVon	
  error	
  

Origin	
  gap	
  size	
  
predicVon	
  error	
  

ARMAX	
   45.9%	
   36.7%	
  

Naïve	
  Bayes	
   37.5%	
   24.6%	
  

GMM	
  
(K	
  =	
  10)	
   31.3%	
   18.1%	
  

Proposed	
  
(baseline)	
   28.3%	
   16.2%	
  

Proposed	
  
(enhanced)	
   22.8%	
   11.4%	
  



§  Simply,	
  we	
  have	
  created	
  inverse	
  mapping	
  
–  Measured	
  paMern	
  ⟶	
  origin	
  paMern	
  (prequalified)	
  
–  This	
  mapping	
  consists	
  of	
  deep	
  feature	
  learner	
  &	
  classifier	
  

§  Deep	
  learning	
  
–  Start	
  with	
  small	
  features,	
  aggregate	
  up,	
  and	
  broaden	
  

coverage	
  
–  Can	
  learn	
  invariances	
  and	
  changes	
  introduced	
  by	
  CSMA	
  	
  

Ø  Arbitrary	
  mix	
  of	
  flows,	
  retransmissions,	
  loss	
  of	
  data	
  

§  Future	
  direc5ons	
  
–  Explore	
  other	
  (dis)similarity	
  metrics	
  (e.g.,	
  DTW)	
  
–  Sparse	
  packet	
  sampling,	
  mul5ple	
  hops	
  
–  Test	
  on	
  real	
  Wi-­‐Fi	
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Table 1: Origin flows used for evaluation

Flow Type Generative triplet �tr,sr, tg�
Flow 1 Constant �2,100,4�
Flow 2 Constant �2,500,2�
Flow 3 Constant �5,200,5�
Flow 4 Constant �10,200,10�
Flow 5 Stochastic �Exp(1), Pareto(100,2), Exp(0.1)�
Flow 6 Stochastic �Exp(0.5), Pareto(40,1), Exp(0.25)�
Flow 7 Stochastic �U(4,10), Pareto(100,2), Exp(0.5)�
Flow 8 Stochastic �N(10,5), Pareto(40,1), N(10,5)�
Flow 9 Mixed �1, Pareto(100,2), 1�
Flow 10 Mixed �1, Pareto(100,2), Exp(0.25)�

of 500 elements.

6.1.2 Preprocessing generated origin flow patterns

We precompute the mean run and gap lengths from the

generated origin flow patterns in the training dataset.

This is convenient because we enable simple lookup

(of the precomputed values) based on the classifi-

cation result of a measured flow in order to esti-

mate the origin run and gap properties. In Figure 8,

we have
�
s1

1
s1

2
0 0 0 s2

1
0 0 0 0 0 s3

1
s3

2
s3

3
0 0 . . .

�
, where

s1 = ∑2

k=1
s1

k , s2 = ∑1

k=1
s2

k , s3 = ∑3

k=1
s3

k give total bytes

of the three bursts. We can then compute the mean burst

size for this pattern. We also compute {t1
r , t2

r , t3
r , . . .},

{t1
g , t2

g , t3
g , . . .}, and their mean values.
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Figure 8: Computing generated flow statistics

6.1.3 Evaluation metrics

We are foremost interested in the accuracy of classifying

a measured pattern x to its ground-truth origin flow pat-

tern f. We compute two metrics, recall (true positive rate)

and false alarm (false positive rate), to evaluate classifi-

cation performance:

Recall = ∑True positives

∑True positives + ∑False negatives

False alarm =
∑False positives

∑False positives + ∑True negatives

Without false alarm rate, we cannot truly assess the

probability of detection for a classifier using a computed

recall value because the classifier can be configured to

declare positive only, automatically achieving to guess

all positives correctly. Classification leads to inferring

Table 2: Wi-Fi parameter configuration for Scenario 1

Parameter Description Value

aSlotTime Slot time 20 µsec

aSIFSTime Short interframe space (SIFS) 10 µsec

aDIFSTime DCF interframe space (DIFS) 50 µsec

aCWmin Min contention window size 15 slots

aCWmax Max contention window size 1023 slots

tPLCPPreamble PLCP preamble duration 16 µsec

tPLCP SIG PLCP SIGNAL field duration 4 µsec

tSymbol OFDM symbol duration 4 µsec

other important properties of a flow from its training

dataset records. As our secondary evaluation metrics, we

calculate errors in estimating the original mean burst size

and mean gap length of the flow.

6.2 Scenario 1: Three Wi-Fi Nodes
Figure 9 depicts Scenario 1. In this simple scenario, we

infer the origin time series fA sent by source node A, us-

ing xA|B measured at receiver node B. Node C, another

source, contends with node A by transmitting its own

flow fC. We carry out cross-validation with all 10 flow

datasets by setting fA = fi ∀i ∈ {1, . . . ,10}, flow by flow

at once. When fA = fi, we randomly set fC = f j ∀ j �= i.
Node C can change its flow pattern from f j to fk, while

node A still running fi, but fk is chosen such that k �= i.

Figure 9: Scenario 1

Wi-Fi setup. We have implemented a custom discrete-

event simulator in MATLAB, assuming the IEEE

802.11g our baseline Wi-Fi system. At its core, our

CSMA implementation is based on an open-source wire-

less simulator [2]. The backoff mechanism works as

follows. The contention window CW is initialized to

aCWmin. In case of timeout, CSMA doubles CW, other-

wise waits until the channel becomes idle with an ad-

ditional DCF interframe space (DIFS) duration. CSMA

chooses a uniformly random wait time between [1, CW].

CW can grow up to aCWmax of 1,023 slots. CW is decre-

mented only when the media is sensed idle. RTS and

CTS are disabled. The Wi-Fi configuration is summa-

rized in Table 2.

Inference schemes. We have implemented all of the

inference schemes in MATLAB. We consider ARMAX-
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Figure 6: Single-layer feature learning. 1-vs-all classi-
fication recall and FDR for language identification

OMP/K−SVD 3−grams ED/K−means DTW/K−medoids 2/3/4−grams
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Recall (2 layers)
FDR (2 layers)
Recall (128−bit padding)
FDR (128−bit padding)

Figure 7: Two-layer deep feature learning. 1-vs-all
classification recall and FDR for language identification

Each datapoint is a vector of 1,000 elements constituting the encrypted payload-length time series
(measured in bytes), acquired from approximately 30 sec speech of one speaker.

Implementation. We have implemented the proposed deep feature learning and classification
system in MATLAB. We use Technion’s open-source OMP (v10) and K-SVD (v13) implemen-
tations [28] and LIBSVM [17]. We have written our own DTW module and K-medoids based on
it. We consider the SRTP default, length-preserving AES encryption in counter mode. We will later
show the impact of padding to a cipher block size on classification accuracy. We train mainly 1-vs-all
SVM classifiers. For comparison to Wright et al. [31], we also train 1-vs-1 classifiers selectively.

Classification accuracy metrics. To evaluate the accuracy performance of our classifiers, we com-
pute recall (true positive rate) and either false discovery rate (FDR) or false positive rate (FPR):
Recall =

�True positives
�True positives+

�False negatives , FDR =
�False positives

�False positives+
�True positives , and

FPR =
�False positives

�False positives+
�True negatives . We use FDR for 1-vs-all classifiers. Because we have

21 classes for the 22 Language dataset and 24 classes (including American English accent) for FAE,
the total number of negatives tends to be much larger than the number of positives when testing each
1-vs-all classifier against all samples in the test dataset. This makes FPR unfairly small for 1-vs-all,
thus FDR should be preferred. We compute FPR for 1-vs-1 classifiers.

Single layer analysis. We compare the performance of numerous L1 f-ext choices in a single layer
configuration: 1) OMP sparse coder & K-SVD (§4.2); 2) 3-grams (§4.2); 3) ED coder & K-means
clustering (§5.1); 4) DTW coder & K-medoids clustering (§5.1); 5) simultaneous 2/3/4-grams (§5.2).
We do max pooling by m = 10 on the L1 f-ext output vectors before applying to linear SVM
classifiers. We input each datapoint (∈ R1,000) in a training dataset as a stream from which xk ∈ RN

are formed as in Figure 4, using relatively short N = 64 (i.e., about 3.2 sec-long speech fragment).
There is an overlap τ = 0.2 · N between consecutive xk’s. We use K = 100 (dictionary atoms or
clusters) for each of 21 classes in the language identification problem, the concatenated dictionary
would have 2,100 atoms. We regularize OMP, ED, and DTW coders by setting P = 50 < K.

n-grams are a great choice for the high-performance L1 f-ext. However, there is a crucial drawback
for practical uses. We have observed that 22 Language dataset incurs 137 different voice payload
sizes in the Opus VBR coding (for FAE dataset, we find 98 different payload lengths), making the
unigram space size |S1| = 137. If we were to generate 2-, 3-, and 4-gram tables exhaustively, we
would face |S2| = 18, 769, |S3| ≈ 2.5 million, and |S4| ≈ 352 million. So we had to reduce the
4-gram table to popular thousands, 3-grams to a few thousands, and so forth. Still, the feature vector
with n-gram embedding has a huge dimensionality compared to other L1 f-ext choices.

Figure 6 shows the average recall and FDR of 1-vs-all classification for language identification (with
22 Language dataset) based on the single layer feature extraction with a specified L1 f-ext over the
horizontal axis. For single layer, the accuracy performance of the proposed DTW coder is very close
to simultaneous 2/3/4-grams. DTW-based single layer results in a better recall, but induces more
false positives by having a higher FDR. As expected, DTW performs superior over ED in clustering
and matching time series data.

Language identification. We have been able to improve the classification performance by adding
one more layer. At layer 2, the OMP sparse coder takes in the pooled DTW-based feature vectors of
layer 1. We use overlapping max pooling at layer 2. Figure 8 presents the complete confusion matrix
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