An Enterprise Dynamic Thresholding System

Mazda Marvasti, Arnak Poghosyan, Ashot Harutyunyan, and Naira Grigoryan

Presented by: Bob Patten, VMware

Agenda

- Modern IT management challenges
- The data agnostic method for anomaly detection
- An enterprise dynamic thresholding system
- Data categorization approach
- Category-specific dynamic threshold determination
- Experimental insights
- Real-World Customer Use Case

Modern IT management challenges

- Management based on operator domain expertise is no longer efficient
- Huge distributed cloud systems, virtualized environments
- Complicated interrelation between the constituent components
- Business infrastructures are highly dynamic behaviors do not fit classical Gaussian normal distributions
- Static thresholding of processes and performance indicators become inadequate yielding thousands of un-actionable alerts
- Manually developed and maintained correlation rules yield no significant benefit to problem identification

The data agnostic method for anomaly detection

- Automatically learns the normal behavior of any time-series metric
- Makes no assumptions as to the metrics' behavior or distribution
- Calculates an upper and lower bound hourly dynamic threshold
- Determines normal or abnormal behavior (anomalies) of individual metrics
- When metrics behave abnormally, additional algorithms and deterministic methods can be applied to determine system abnormality
- VMware's vCenter Operations Manager (vC Ops) is an industry-leading Big Data solution for IT Management which utilizes the described enterprise dynamic thresholding algorithms

An enterprise dynamic thresholding system

The monitoring and alerting based on data analysis behind vC Ops

Example metric dynamic threshold

Weekend/Weekday repeating pattern of normal behavior

Resulting Dynamic Thresholds

Data categorization approach

Data categorization approach: examples

Trendy

Multinomial

Data categorization approach

Sparse

Regular/Periodic

Category-specific DT determination: sparse data

- Performing data density recognition based on probability calculation that reveals distribution of gaps
 - Random?
 - Uniform?
 - Pattern?
- Differentiating the following clusters of data:
 - Data Identification: Dense/Sparse (relative to monitoring interval)
 - Data with technical gap (localized gap due to malfunction of monitoring device)
 - Corrupted Data

Category-specific DT determination: stable data

- Statistical stability recognition of data
 - If data is stable or its stable portion can be selected then the data is defined as Stable Data
 - Otherwise data is defined as Corrupted

Category-specific DT determination: variability

•
$$R = \frac{iqr(\{x_k'\}_{k=1}^{N-1})}{iqr(\{x_k\}_{k=1}^{N})} 100\%, \quad iqr(\{x_k\}_{k=1}^{N}) \neq 0$$

Category-specific DT determination: periodicity

- Periodic data: seeking similar patterns in the historical behavior of time series
 - The notion of the Cyclochart is similar to the frequency spectrum in the Fourier analysis or signal processing

Category-specific DT determination: optimization

- Statistically trade-off the number of false positive and false negative alerts
- Two different approaches for determination of DT's via maximization of the objective function

$$g(P,S) = e^{aP} \frac{S}{S_{max}}$$

- Data-range-based analysis
- Data-variability-based analysis

Experimental insights

- A specific customer metric data set
- Selected 3215 monitored metrics
- Those metrics represented the essential flows for one of the customer's critical business services
- Data length is one month
- Ran metrics through Dynamic Thresholding analytics process
- Resulting count of periodic/non-periodic/corrupted data

Periodic	Non- Periodic	Corrupted	Overall
1511	1595	109	3215

Experimental insights

Distribution across the categories

Data Category	Count (Percentage) of Metrics in the Category	
Multinomial	724 (22.5%)	
Trendy	165 (5.1%)	
Semi-Constant	532 (16.5%)	
Transient	102 (3.2%)	
Sparse	88 (2.7%)	
Low-Variability	826 (25.7%)	
High-Variability	669 (20.8%)	
Corrupted	109 (3.4%)	

A Production Use Case – 4 Hour Proactive Notification

Production Scenario

- Citrix Xen Desktop Remote Desktop Environment on Virtual Infrastructure
- Multiple XenApp Server VMs serve the end-users Remote Desktops
- Monday morning, March 24th, significant abnormal behavior
- XenApp VM owner (Citrix Admin) called at 8:00 AM, returned call at 10:00 AM
 - Initial evaluation by Citrix admin is "All OK, end users are not complaining"
 - Subsequent investigation yielded a call-back and thank you to Operations
 - A config change in the Citrix env over the weekend was causing orphaned sessions
 - Citrix Admin fixed the error and cleaned up the sessions
 - If Operations had not proactively notified Citrix Admin, end users would have been seriously impacted

A Production Use Case – XenApp Server Abnormal Behavior

A Production Use Case – XenApp Server Abnormal Behavior

Conclusions

- Our categorization techniques allow achieving a more accurate Dynamic Threshold for the individual metric
- By using optimization techniques we achieve optimal balance between false positive and false negative alerts
- This would not be possible with classical parametric approaches including Fourier transform, and other common purpose enterprise algorithms
- Moreover, this approach enables other algorithms to be applied to determine system issues with more accuracy.