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Introduction 
• Big Data era has arrived! 

• Facebook processes daily more than 500 TB of data 

• Twitter users generate 500M tweets per day 

• Dublin’s city operational center receives over 100 bus GPS traces per 
minute 

• Wide range of domains 
– Traffic monitoring 

– Inventory management 

– Healthcare infrastructures 

• More data than we can handle with traditional approaches 
(e.g. relational databases) 

• Novel frameworks were proposed 

– Batch processing 
• Google’s MapReduce 

• IBM’s BigInsights 

• Microsoft’s Dryad 

– Stream processing 

• Storm 

• IBM’s Infosphere Streams 
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The MapReduce Model 
• MapReduce [Dean@OSDI2004] was proposed as a powerful and cost-effective 

approach for massive scale batch processing 

• Popularized via its open source implementation, Hadoop, is used by some of 
the major computer companies: 
– Yahoo! 

– Twitter 

– Facebook 

• Intense processing jobs are broken into smaller tasks 

• Two stages of processing map and reduce 

 

 

 

• All [𝑘2, 𝑣2] intermediate pairs assigned to the same reduce task are called a 
reduce task’s partition 

 

map(𝑘1, 𝑣1)→[𝑘2, 𝑣2] 

reduce(𝑘2, [𝑣2])→[𝑘3, 𝑣3] 
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Processing Big Data with MapReduce Challenges 

• Load imbalances due to skewed data 

• Heterogeneous environments with heterogeneous processing 
capabilities 

• Real time response requirements 
• 95% of Facebook’s MapReduce jobs have average execution time of 30 

seconds [Chen@MASCOTS2011] 
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Problem 

Question: How can we efficiently schedule the execution of multiple 
MapReduce jobs with real-time response requirements? 

 

Challenges: 

• Maximize the probability of meeting end-to-end real-time response 
requirements 

• Effectively handle skewed data 

• Identify overloaded nodes 

• Deal with heterogeneous environments 
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DynamicShare System 

We propose DynamicShare a novel MapReduce framework for 
heterogeneous environments. Our approach makes the following 
contributions: 

• New jobs’ execution times estimation model based on non-
parametric regression  

• Distributed least laxity first scheduling of jobs’ tasks to meet end-
to-end demands 

• Early identification of overloaded nodes through Local Outlier 
Factor algorithm 

• Handling data skewness with two approaches: 
– Simple partitions’ assignment 

– Count-Min Sketch assignment 
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The MapReduce Model 

M 

M 

M R.1 

Pa
rt

it
io

n
in

g 

P.2 

Reduce Phase Map Phase 

P.1 

P.3 

Split 
File 

(𝒌𝟏, 𝒗𝟏) (𝒌𝟐, 𝒗𝟐) 

(𝒌𝟑, 𝒗𝟑) (𝒌𝟒, 𝒗𝟒) 

(𝒌𝟓, 𝒗𝟓) 

(𝒌𝟓, 𝒗𝟔) (𝒌𝟔, 𝒗𝟕) 

(𝒌𝟐, 𝒗𝟖) 

(𝒌𝟏, [𝒗𝟏]) 

(𝒌𝟐, 𝒗𝟐, 𝒗𝟖 ) 

(𝒌𝟓, [𝒗𝟓, 𝒗𝟔]) 

(𝒌𝟑, [𝒗𝟑]) 

(𝒌𝟒, [𝒗𝟒]) 

P.4 

P.5 

(𝒌𝟔, [𝒗𝟕]) 

(𝒌𝟑, [𝒗𝟑]) 

(𝒌𝟔, [𝒗𝟕]) 

R.2 

R.3 

Split 
File 

Split 
File 

Out-
put 

Out-
put 

Out-
put 

Nikos Zacheilas 7 



DynamicShare Architecture 

Master 

Workers 

Reduce Task Slots 

Map Tasks Slots 
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• DynamicShare comprises a single 
Master and multiple Worker nodes 

• Master node 
• responsible for assigning map 

and reduce tasks to Workers 
under skewness and real-time 
criteria 

• monitor jobs performance 
• Worker nodes 

• execute map/reduce tasks 
• report task progress 



System Model 
Each submitted job 𝑗 comprises a sequence of invocations of map 
and reduce tasks. Each job 𝑗 is characterized by: 

• 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑗  is the time interval, starting at job initialization, within 
which job 𝑗 must be completed 

• 𝑃𝑟𝑜𝑗_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑗: the estimated amount of time required for the 
job to complete. Estimation is given by the following Equation: 
𝑃𝑟𝑜𝑗_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑗 = max 𝑚𝑖,𝑡 , … ,𝑚𝑘,𝑡 +max {𝑟𝑧,𝑡, … , 𝑟𝑙,𝑡} 

• 𝐿𝑎𝑥𝑖𝑡𝑦𝑗 : the difference between 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑗  and 
𝑃𝑟𝑜𝑗_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑗, considered a metric of urgency for job  

• 𝑠𝑝𝑙𝑖𝑡_𝑠𝑖𝑧𝑒𝑗: the size of a split file 

Each task 𝑡 of job 𝑗 has the following parameters: 

• 𝑚𝑖,𝑡, 𝑟𝑖,𝑡: estimated execution times of map and reduce tasks in 
Worker 𝑖 

• 𝑐𝑝𝑢𝑖,𝑡 , 𝑚𝑒𝑚𝑜𝑟𝑦𝑖,𝑡: average CPU and memory usage of task 𝑡 in 
Worker 𝑖 
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DynamicShare: How it works? 
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Task Scheduling 
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Task Scheduling 
• Given the 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑗  and 𝑃𝑟𝑜𝑗_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑗  for job 𝑗, we compute 

the  𝐿𝑎𝑥𝑖𝑡𝑦𝑗  value with the following formula 

𝐿𝑎𝑥𝑖𝑡𝑦𝑗 = 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑗 − 𝑃𝑟𝑜𝑗_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑗  

• Least laxity scheduling is a dynamic algorithm that allow us to 
compensate for queueing delays experienced by the tasks 
executing at the nodes 

• TaskScheduler sorts jobs’ tasks based on the 𝐿𝑎𝑥𝑖𝑡𝑦𝑗  values. Tasks 

of jobs with the smaller laxity values will be closer to the head of 
the queue 

• Scheduling decisions are made when: 

1. New tasks are assigned to the TaskScheduler’s 

2. Tasks finish or miss their deadlines 
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Estimating Task’s Execution Time 
• Current solutions such as building job profiles  or using debug runs 

are not adequate 

• Works well for homogeneous environments 

• What happens though in heterogeneous environments where 
multiple applications may share the same resources? 

• Need to take into account the resource requirements (e.g., CPU, 
memory usage) of newly submitted tasks 

 

 

 

• Approximate 𝑚 𝑥  function 
– Parametric regression considers the functional form known 

– Non-parametric regression makes no assumption (data-driven technique) 

 

𝑥 = 𝑠𝑝𝑙𝑖𝑡_𝑠𝑖𝑧𝑒𝑗 , 𝑐𝑝𝑢𝑖,𝑡 , 𝑚𝑒𝑚𝑜𝑟𝑦𝑖,𝑡  
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Estimating Task’s Execution Time 
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Identifying Overloaded Nodes 
• Due to the dynamic behavior of the jobs Workers performance 

may change rapidly. Need to quickly detect overloaded Workers 

• We consider overloaded nodes those that are assigned more tasks 
than their processing capabilities 

• Key Observation: Laxity values of these tasks will be left behind in 
relation to the tasks running in different nodes 

• Solution: Applied Local Outlier Factor algorithm (LOF) on the laxity 
values of the tasks of the same job that run on different Workers 

• 𝐿𝑂𝐹𝑙(𝑙𝑎𝑥𝐴): =
 𝑙𝑟𝑑𝑙(𝑙𝑎𝑥𝐵)𝑙𝑎𝑥𝐵∈𝑁𝑙(𝑙𝑎𝑥𝐴)

|𝑁𝑙(𝑙𝑎𝑥𝐴)|∗𝑙𝑟𝑑𝑙(𝑙𝑎𝑥𝐴)
 

• Compares reachability density of a point with                 
each neighbors 
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Handling Skewed Data 
In our system two types of skew frequently occur: 
• Skewed Key Frequencies 
• Skewed Tuple Sizes 
Idea: Use more partitions than the original MapReduce 
Problem: How to assign partitions to the reduce tasks in order to minimize 
the reduce phase execution time? 
Exploit two approaches: 
• Simple Partitions’ Assignment 
• Count Min Sketch Assignment 
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Simple Partitions’ Assignment 
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1. Calculate partitions sizes (𝑃𝑖) 
2. Sort partition sizes 
3. Estimate the execution times (𝑟. 𝑡𝑖) of assigning 

each partition to the available reduce tasks  
4. Pick the reduce task (𝑅𝑖) that requires the 

minimum execution time 



Count-Min Sketch Assignment 
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1. Calculate partitions’ sizes (𝑃𝑖) for each hash 
function (ℎ𝑖) 

2. For each hash function apply Simple Partitions 
Assignment algorithm 

3. Pick the hash function (ℎ𝑖) that minimizes the 
reduce phase execution time 



Implementation 
• We implemented and evaluated DynamicShare on Planetlab. 

Fourteen nodes were used with 82 processing cores. One dedicated 
node was the Master and the others used as Workers 

• Two MapReduce jobs were issued: 
– A Twitter friendship request query on 2GB of available tweets. 59 map and 23 

reduce tasks were used 

– A Youtube friends counting application for a 39MB Youtube social graph. 
Again 59 map and 23 reduce tasks were used 

• Compared  our scheduling proposal with: 
– Earliest Deadline First (EDF) 

– FIFO 

– FAIR 

• Our partitioning algorithms were compared to: 
– Load Balance [Gufler@CLOSER2011] 

– Hadoop 

– Skewtune [Kwon@SIGMOD2012] 
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Experiments 

• k-NN Smoothing 
Performance 

• Initially when not 
enough data are 
available, the estimated 
value is larger than the 
actual 

• Better prediction when 
more past runs are used 

• LOF Execution time 
• LOF depends on the 

number of tasks used by 
a job 

• Even for great number 
of tasks the algorithm is 
capable of detecting 
outliers in respectable 
amount of time 

• Deadline misses 
comparison 

• LLF maintains the 
percentage of deadline 
misses at the lowest 
possible level 

• Takes into account the 
current system 
conditions for the 
assignment Nikos Zacheilas 20 



Experiments 

• Comparing LB with DP in regards to 
achieved balance 

• LB has better results because it 
considers a fair distribution of the 
partitions to the available reduce tasks 

• DP does not consider balance in the 
assignment 

• Comparing DP with LB in regards to 
achieved execution time 

• Balance is not the correct approach for 
heterogeneous environments 

• DP’s opportunistic assignment exploits 
high performance nodes by assigning 
extra partitions 
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Experiments 

• Comparing DP with Skewtune and Hadoop 
partitioning 

• Hadoop leads to the execution of large 
partitions to slow nodes 

• Skewtune repartitioning cost is prohibitive 
for short jobs 

• DP does an appropriate one time 
assignment 

• Similar results were observed in Youtube 
job 

• Comparing DP with and without 
sketches 

• DP with sketches achieves better results 
than DP without sketches, because more 
partitions assignments are possible 

• However the overhead of the algorithm 
is not negligible. When sketches are 
applied DP requires approximately 200 
ms while without sketches only 80 ms 
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Conclusions and Future Work 
• We proposed a new framework for handling MapReduce jobs 

with real-time constraints in highly heterogeneous 
environments using: 
– non-parametric regression for estimating tasks’ execution times 

– Least Laxity First scheduling of jobs’ tasks in the available slots 

– Local Outlier Factor for detecting overloaded nodes 

– Dynamic Partitioning algorithms for handling skewed data 

• Evaluated our proposal in Planetlab, and the results point out 
that our system achieves its goals 

• Future work: 
– Dynamically decide the number of partitions and examine the trade-off 

between the reduce phase execution time and the two partitioning 
algorithms 

Nikos Zacheilas 23 



Thank you 

 

Questions?? 
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