
Real-time Scheduling of Skewed
MapReduce Jobs in Heterogeneous

Environments

Nikos Zacheilas, Vana Kalogeraki

Department of Informatics

Athens University of Economics and Business

1

Introduction
• Big Data era has arrived!

• Facebook processes daily more than 500 TB of data

• Twitter users generate 500M tweets per day

• Dublin’s city operational center receives over 100 bus GPS traces per
minute

• Wide range of domains
– Traffic monitoring

– Inventory management

– Healthcare infrastructures

• More data than we can handle with traditional approaches
(e.g. relational databases)

• Novel frameworks were proposed

– Batch processing
• Google’s MapReduce

• IBM’s BigInsights

• Microsoft’s Dryad

– Stream processing

• Storm

• IBM’s Infosphere Streams

 Nikos Zacheilas 2

The MapReduce Model
• MapReduce [Dean@OSDI2004] was proposed as a powerful and cost-effective

approach for massive scale batch processing

• Popularized via its open source implementation, Hadoop, is used by some of
the major computer companies:
– Yahoo!

– Twitter

– Facebook

• Intense processing jobs are broken into smaller tasks

• Two stages of processing map and reduce

• All [𝑘2, 𝑣2] intermediate pairs assigned to the same reduce task are called a
reduce task’s partition

map(𝑘1, 𝑣1)→[𝑘2, 𝑣2]

reduce(𝑘2, [𝑣2])→[𝑘3, 𝑣3]

Nikos Zacheilas 3

Processing Big Data with MapReduce Challenges

• Load imbalances due to skewed data

• Heterogeneous environments with heterogeneous processing
capabilities

• Real time response requirements
• 95% of Facebook’s MapReduce jobs have average execution time of 30

seconds [Chen@MASCOTS2011]

Youtube social graph application Nikos Zacheilas 4

Problem

Question: How can we efficiently schedule the execution of multiple
MapReduce jobs with real-time response requirements?

Challenges:

• Maximize the probability of meeting end-to-end real-time response
requirements

• Effectively handle skewed data

• Identify overloaded nodes

• Deal with heterogeneous environments

Nikos Zacheilas 5

DynamicShare System

We propose DynamicShare a novel MapReduce framework for
heterogeneous environments. Our approach makes the following
contributions:

• New jobs’ execution times estimation model based on non-
parametric regression

• Distributed least laxity first scheduling of jobs’ tasks to meet end-
to-end demands

• Early identification of overloaded nodes through Local Outlier
Factor algorithm

• Handling data skewness with two approaches:
– Simple partitions’ assignment

– Count-Min Sketch assignment

Nikos Zacheilas 6

The MapReduce Model

M

M

M R.1

Pa
rt

it
io

n
in

g

P.2

Reduce Phase Map Phase

P.1

P.3

Split
File

(𝒌𝟏, 𝒗𝟏) (𝒌𝟐, 𝒗𝟐)

(𝒌𝟑, 𝒗𝟑) (𝒌𝟒, 𝒗𝟒)

(𝒌𝟓, 𝒗𝟓)

(𝒌𝟓, 𝒗𝟔) (𝒌𝟔, 𝒗𝟕)

(𝒌𝟐, 𝒗𝟖)

(𝒌𝟏, [𝒗𝟏])

(𝒌𝟐, 𝒗𝟐, 𝒗𝟖)

(𝒌𝟓, [𝒗𝟓, 𝒗𝟔])

(𝒌𝟑, [𝒗𝟑])

(𝒌𝟒, [𝒗𝟒])

P.4

P.5

(𝒌𝟔, [𝒗𝟕])

(𝒌𝟑, [𝒗𝟑])

(𝒌𝟔, [𝒗𝟕])

R.2

R.3

Split
File

Split
File

Out-
put

Out-
put

Out-
put

Nikos Zacheilas 7

DynamicShare Architecture

Master

Workers

Reduce Task Slots

Map Tasks Slots

Nikos Zacheilas 8

• DynamicShare comprises a single
Master and multiple Worker nodes

• Master node
• responsible for assigning map

and reduce tasks to Workers
under skewness and real-time
criteria

• monitor jobs performance
• Worker nodes

• execute map/reduce tasks
• report task progress

System Model
Each submitted job 𝑗 comprises a sequence of invocations of map
and reduce tasks. Each job 𝑗 is characterized by:

• 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑗 is the time interval, starting at job initialization, within
which job 𝑗 must be completed

• 𝑃𝑟𝑜𝑗_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑗: the estimated amount of time required for the
job to complete. Estimation is given by the following Equation:
𝑃𝑟𝑜𝑗_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑗 = max 𝑚𝑖,𝑡 , … ,𝑚𝑘,𝑡 +max {𝑟𝑧,𝑡, … , 𝑟𝑙,𝑡}

• 𝐿𝑎𝑥𝑖𝑡𝑦𝑗 : the difference between 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑗 and
𝑃𝑟𝑜𝑗_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑗, considered a metric of urgency for job

• 𝑠𝑝𝑙𝑖𝑡_𝑠𝑖𝑧𝑒𝑗: the size of a split file

Each task 𝑡 of job 𝑗 has the following parameters:

• 𝑚𝑖,𝑡, 𝑟𝑖,𝑡: estimated execution times of map and reduce tasks in
Worker 𝑖

• 𝑐𝑝𝑢𝑖,𝑡 , 𝑚𝑒𝑚𝑜𝑟𝑦𝑖,𝑡: average CPU and memory usage of task 𝑡 in
Worker 𝑖

Nikos Zacheilas 9

DynamicShare: How it works?

Master

Worker

Split
File

2. 3.

4.

5.

5.

6.

7.

8. 9.

10.

Laxity
values

Partitions’
Sizes

Assignment

Split
File

1.

M M

R R

Task Slots

𝑗1 𝑙1

𝑗2 𝑙2

𝑗3 𝑙3

𝑗1 𝑙1

𝑗1 𝑙1

𝑗1

𝑗1

10

Task Scheduling

Master

Split
File

2. 3.

4.

5.

5.

6.

7.

8. 9.

10.

Laxity
values

Partitions’
Sizes

Assignment

Split
File

1.

M M

R R

Task Slots

𝑗1 𝑙1

𝑗2 𝑙2

𝑗3 𝑙3

𝑗1 𝑙1

𝑗1 𝑙1

𝑗1

𝑗1

Nikos Zacheilas 11

Task Scheduling
• Given the 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑗 and 𝑃𝑟𝑜𝑗_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑗 for job 𝑗, we compute

the 𝐿𝑎𝑥𝑖𝑡𝑦𝑗 value with the following formula

𝐿𝑎𝑥𝑖𝑡𝑦𝑗 = 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑗 − 𝑃𝑟𝑜𝑗_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑗

• Least laxity scheduling is a dynamic algorithm that allow us to
compensate for queueing delays experienced by the tasks
executing at the nodes

• TaskScheduler sorts jobs’ tasks based on the 𝐿𝑎𝑥𝑖𝑡𝑦𝑗 values. Tasks

of jobs with the smaller laxity values will be closer to the head of
the queue

• Scheduling decisions are made when:

1. New tasks are assigned to the TaskScheduler’s

2. Tasks finish or miss their deadlines

Nikos Zacheilas 12

Estimating Task’s Execution Time
• Current solutions such as building job profiles or using debug runs

are not adequate

• Works well for homogeneous environments

• What happens though in heterogeneous environments where
multiple applications may share the same resources?

• Need to take into account the resource requirements (e.g., CPU,
memory usage) of newly submitted tasks

• Approximate 𝑚 𝑥 function
– Parametric regression considers the functional form known

– Non-parametric regression makes no assumption (data-driven technique)

𝑥 = 𝑠𝑝𝑙𝑖𝑡_𝑠𝑖𝑧𝑒𝑗 , 𝑐𝑝𝑢𝑖,𝑡 , 𝑚𝑒𝑚𝑜𝑟𝑦𝑖,𝑡

Execution
Times

Estimator
𝑚𝑖,𝑡

𝑚 𝑥

Nikos Zacheilas 13

Estimating Task’s Execution Time

𝑥

Execution
Times

Estimator

𝑚𝑖,𝑡

𝑚 𝑥 =
1

𝑛
 𝑊𝑖

𝑛

𝑖=1

(𝑥) ∙ 𝑦𝑖

Vector Execution
Time

𝑥 1 𝑦1

… …

𝑥 𝑛 𝑦𝑛

Non-parametric Regression

𝑥

Execution
Times

Estimator
𝑚𝑖,𝑡

𝑚 𝑥 =
1

𝑘
 𝑊𝑖

𝑘

𝑖=1

(𝑥) ∙ 𝑦𝑖

Vector Execution
Time

𝑥 1 𝑦1

… …

𝑥 𝑛 𝑦𝑛

k-Nearest Neighbor (k-NN) Smoothing

Use k closest in
Euclidean distance
past runs

Past runs Past runs

Nikos Zacheilas 14

Identifying Overloaded Nodes
• Due to the dynamic behavior of the jobs Workers performance

may change rapidly. Need to quickly detect overloaded Workers

• We consider overloaded nodes those that are assigned more tasks
than their processing capabilities

• Key Observation: Laxity values of these tasks will be left behind in
relation to the tasks running in different nodes

• Solution: Applied Local Outlier Factor algorithm (LOF) on the laxity
values of the tasks of the same job that run on different Workers

• 𝐿𝑂𝐹𝑙(𝑙𝑎𝑥𝐴): =
 𝑙𝑟𝑑𝑙(𝑙𝑎𝑥𝐵)𝑙𝑎𝑥𝐵∈𝑁𝑙(𝑙𝑎𝑥𝐴)

|𝑁𝑙(𝑙𝑎𝑥𝐴)|∗𝑙𝑟𝑑𝑙(𝑙𝑎𝑥𝐴)

• Compares reachability density of a point with
each neighbors

Nikos Zacheilas 15

Handling Skewed Data
In our system two types of skew frequently occur:
• Skewed Key Frequencies
• Skewed Tuple Sizes
Idea: Use more partitions than the original MapReduce
Problem: How to assign partitions to the reduce tasks in order to minimize
the reduce phase execution time?
Exploit two approaches:
• Simple Partitions’ Assignment
• Count Min Sketch Assignment

Master

Worker

Split
File

2. 3.

4.

5.

5.

6.

7.

8. 9.

10.

Partitions’
Sizes Assignment

Split
File

1.

M M

R R
Task Slots

Laxity
values

Nikos Zacheilas 16

Simple Partitions’ Assignment

Map Tasks

Dynamic Partitioning
Algorithm

𝑃2

𝑃2

𝑃1 𝑃1 𝑃1

𝑃1

𝑃2

+

𝑃2 𝑃2 𝑃2 +

𝑃1:𝑅1

Master

𝑟. 𝑡1
𝑟. 𝑡2

Estimated via k-NN
smoothing

𝑃1

𝑃1

Reduce Tasks

𝑃1:𝑅1

Nikos Zacheilas 17

1. Calculate partitions sizes (𝑃𝑖)
2. Sort partition sizes
3. Estimate the execution times (𝑟. 𝑡𝑖) of assigning

each partition to the available reduce tasks
4. Pick the reduce task (𝑅𝑖) that requires the

minimum execution time

Count-Min Sketch Assignment

Map Tasks

Dynamic Partitioning
Algorithm

ℎ1: 𝑃1

+ Master

ℎ2: 𝑃1

ℎ1: 𝑃1 ℎ2: 𝑃1

ℎ1: 𝑃1 ℎ1: 𝑃1 ℎ1: 𝑃1

+ ℎ2: 𝑃1 ℎ2: 𝑃1 ℎ2: 𝑃1

ℎ1: 𝑃1: 𝑅1

ℎ2: 𝑃1: 𝑅2

ℎ1: 𝑃1 : 𝑅1

ℎ1: 𝑃1 : 𝑅1

ℎ1: 𝑃1
ℎ2: 𝑃1

Reduce Tasks

Nikos Zacheilas 18

1. Calculate partitions’ sizes (𝑃𝑖) for each hash
function (ℎ𝑖)

2. For each hash function apply Simple Partitions
Assignment algorithm

3. Pick the hash function (ℎ𝑖) that minimizes the
reduce phase execution time

Implementation
• We implemented and evaluated DynamicShare on Planetlab.

Fourteen nodes were used with 82 processing cores. One dedicated
node was the Master and the others used as Workers

• Two MapReduce jobs were issued:
– A Twitter friendship request query on 2GB of available tweets. 59 map and 23

reduce tasks were used

– A Youtube friends counting application for a 39MB Youtube social graph.
Again 59 map and 23 reduce tasks were used

• Compared our scheduling proposal with:
– Earliest Deadline First (EDF)

– FIFO

– FAIR

• Our partitioning algorithms were compared to:
– Load Balance [Gufler@CLOSER2011]

– Hadoop

– Skewtune [Kwon@SIGMOD2012]

Nikos Zacheilas 19

Experiments

• k-NN Smoothing
Performance

• Initially when not
enough data are
available, the estimated
value is larger than the
actual

• Better prediction when
more past runs are used

• LOF Execution time
• LOF depends on the

number of tasks used by
a job

• Even for great number
of tasks the algorithm is
capable of detecting
outliers in respectable
amount of time

• Deadline misses
comparison

• LLF maintains the
percentage of deadline
misses at the lowest
possible level

• Takes into account the
current system
conditions for the
assignment Nikos Zacheilas 20

Experiments

• Comparing LB with DP in regards to
achieved balance

• LB has better results because it
considers a fair distribution of the
partitions to the available reduce tasks

• DP does not consider balance in the
assignment

• Comparing DP with LB in regards to
achieved execution time

• Balance is not the correct approach for
heterogeneous environments

• DP’s opportunistic assignment exploits
high performance nodes by assigning
extra partitions

Nikos Zacheilas 21

Experiments

• Comparing DP with Skewtune and Hadoop
partitioning

• Hadoop leads to the execution of large
partitions to slow nodes

• Skewtune repartitioning cost is prohibitive
for short jobs

• DP does an appropriate one time
assignment

• Similar results were observed in Youtube
job

• Comparing DP with and without
sketches

• DP with sketches achieves better results
than DP without sketches, because more
partitions assignments are possible

• However the overhead of the algorithm
is not negligible. When sketches are
applied DP requires approximately 200
ms while without sketches only 80 ms

22

Conclusions and Future Work
• We proposed a new framework for handling MapReduce jobs

with real-time constraints in highly heterogeneous
environments using:
– non-parametric regression for estimating tasks’ execution times

– Least Laxity First scheduling of jobs’ tasks in the available slots

– Local Outlier Factor for detecting overloaded nodes

– Dynamic Partitioning algorithms for handling skewed data

• Evaluated our proposal in Planetlab, and the results point out
that our system achieves its goals

• Future work:
– Dynamically decide the number of partitions and examine the trade-off

between the reduce phase execution time and the two partitioning
algorithms

Nikos Zacheilas 23

Thank you

Questions??

Nikos Zacheilas 24

