Flash Math - FTL Algorithms and Performance

Peter Desnoyers Northeastern University

Why do we care?

Flash is on the way out, isn't it?

Why Math?

Because we don't understand what's going on in the middle of our systems

$$+ m_{i+1} \sum_{j=1, j \neq b-(i+1)} p_{b-j}(\vec{m}) B_{1}(j, (i+1)/b\rho N) \text{ parameters: U=50000, } N_{p}=64, w=500. S_{f} = \frac{1}{\alpha}$$

$$A = \frac{N_{p}}{N_{p}-(X_{0}-1)}$$

$$A = \frac{N_{p}}{N_{p}-(X_{0}-1)}$$

$$= \frac{1}{1+\frac{1}{2N_{p}}+\frac{1}{\alpha}W\left(-\left(1+\frac{1}{2N_{p}}\right)\alpha e^{-\alpha\left(1+\frac{1}{2N_{p}}\right)}\right)$$

$$- m_{i} \sum_{j=1, j \neq b-i}^{b} p_{b-j}(\vec{m}) B_{1}(j, i/b\rho N)$$

$$- m_{i} \left(m_{i} - \frac{1}{N}\right) B_{1}(b - i, i/b\rho N) + o(1/N), \quad (6)$$
nipulation we can express this as:
$$- p_{i}(\vec{m}) \left(m_{i} - \frac{1}{N}\right) B_{1}(b - i, i/b\rho N) + o(1/N), \quad (6)$$

$$A = \frac{A_{LRW}(\alpha')}{1+\frac{1}{2N_{p}}}$$

Definitions

- Physical storage: **T** erase units, **N**_P pages each
- $\mathbf{U} \cdot \mathbf{N}_{\mathbf{p}} (\mathbf{U} < \mathbf{T})$ logical pages, independently mapped
- Uniform random 1-page writes over LBA space
- Over-provisioning $\alpha = \frac{T}{U}$

- Spare factor
$$S_f = \frac{T-U}{T}$$

• Single channel

A bit of math...

In[2]:= Solve[Integrate[Exp[-x*t], {t, 0, 1}] == 1 / \alpha,
x] // TraditionalForm

Out[2]//TraditionalForm=

$$\{\{x \to \alpha + W(-e^{-\alpha} \alpha)\}\}$$

$$A = \frac{\alpha}{\alpha + W\left(-\alpha e^{-\alpha}\right)}$$

- Robinson '96
- Menon & Stockmeyer '98
- Xiang & Kurkoski '12
- Desnoyers '12

What about Greedy?

Valid page statistics (N_p=64, S_f=0.09)

What about Greedy?

Valid page statistics (N_p=64, S_f=0.09)

Per-block Markov

State label = # valid pages

rate \propto # valid pages

$$\alpha' = \left(1 + \frac{1}{2N_p}\right) \alpha \quad A \approx \frac{A_{LRU}(\alpha')}{1 + \frac{1}{2N_p}}$$

- Bux & Iliadis '10
- Desnoyers '12

Hot/Cold data

Rosenblum's model:
 fraction *r* of writes to *f* of LBA space

• E.g. 90% of writes to 10% of LBAs

LRU Cleaning

solve numerically

- Menon & Stockmeyer '98
- Desnoyers '12

LRU hot/cold performance

Split cleaning thresholds

Mean field methods

• Van Houdt 2013

Mean Field Analysis

Requirements for mean-field analysis:

2. **p**_j(**m**) is *smooth* in **m** (e.g. <u>not</u> greedy)

SIGMETRICS 2013

d-CHOICES Cleaning

- d-CHOICES:
 - Randomly select *d* erase units {b₁...b_d}
 - Choose \mathbf{b}_i with minimal valid pages

Mean field solution

- Define *drift* f as change in global state M^N(t) over a single cleaning cycle.
- Let $\mu(t)$ be defined by ODE: $\frac{d\mu}{dt} = f(\mu(t))$
- as t -∞, $\|M_N(t) \mu(t)\| \to 0$
- and converges if the ODE has a fixed point that is a global attractor.

Solve numerically...

Extensions

• Greedy (limit as $d \rightarrow \infty$) • SIGMETRICS 2013

- hot/cold data and single write frontier
- hot/cold data and dual write frontier (i.e. with separation)
 - IFIP Performance 2013

d-CHOICES for Hot/Cold

More on locality

- What does hot / cold data mean?
 - Expected time to over-write
- Can it be predicted?
 - Overwrite vs. create/delete
- What about spatial locality?

Looking at the data

Looking at the data

Real

Predicting lifetime

Predicting lifetime

Real

Models \neq data

Uniform

What have we learned?

- How FTLs perform for synthetic data
- What hot/cold data means
 - expected time until re-write
- How Greedy helps random data (vs. LRU)
 - ¹/₂ page per cleaning, ¹/₂ page/block free space
- For best performance, clean hot blocks at lower utilization than cold ones. (but how much lower?)

What don't we know?

- Other models of hot/cold data
 - mutate vs. create/delete
- Spatial locality
 - no model
 - no metric
- Log-on-Log?
- Is there an optimal FTL?