
Sparsh Mittal, Jeffrey S. Vetter

EqualChance:
Addressing Intra-
set Write
Variation to
Increase Lifetime
of Non-volatile
Caches

I N F L O W

O C T O B E R , 2 0 1 4

C O L O R A D O , U S A

2

Executive Summary
• Limited write endurance is a crucial limitation of NVMs

• Write-variation exacerbates this issue even further.

• We propose EqualChance, a technique to mitigate intra-
set write-variation in on-chip last-level caches.

• It periodically changes the physical block location of a
data-item to achieve wear-leveling.

• Single core experiments, SPEC2006 and HPC workloads

• Results: EqualChance improves cache lifetime by 4.29X

• It has very small implementation and performance
overhead

3

Motivation: Processor Design Trends

• Core-count is
increasing

• LLC size is increasing

Intel’s 32nm Sandy Bridge Core i7-3960X
15MB LLC

4

Motivation: Need of SRAM Alternatives

• SRAM Limitations

– Scalability challenges

– Huge leakage power consumption

– Low density

• SRAM caches consume huge chip area and leakage
power

• Power consumption restricts performance scaling

We need SRAM alternatives!

5

NVMs vis-à-vis SRAM and eDRAM

SRAM eDRAM
STT-RAM

(NVM)
ReRAM
(NVM)

PCM
(NVM)

Cell-size (F2) 120-200 60-100 6-50 4-10 4-12

Write Endurance 1016 1016 4*1012 1011 108-109

Speed Very fast Fast
Fast read, slow

write
Fast read,
slow write

Slow read,
very slow

write

Leakage Power High Medium Low Low Low

Retention Period N/A 30-100 µs
N/A (unless

relaxed) N/A N/A

6

NVMs vis-à-vis SRAM and eDRAM

SRAM eDRAM
STT-RAM

(NVM)
ReRAM
(NVM)

PCM
(NVM)

Cell-size (F2) 120-200 60-100 6-50 4-10 4-12

Write Endurance 1016 1016 4*1012 1011 108-109

Speed Very fast Fast
Fast read, slow

write
Fast read,
slow write

Slow read,
very slow

write

Leakage Power High Medium Low Low Low

Retention Period N/A 30-100 µs
N/A (unless

relaxed) N/A N/A

The write endurance of NVMs is orders of magnitude
smaller than that of SRAM/eDRAM!

7

Write-variation issue in caches

• Conventional cache management policies

– Optimize performance and energy.

– Do not account for limited write-endurance

– May lead to high write-variation

8

Write-variation issue in caches

• Conventional cache management policies

– Optimize performance and energy.

– Do not account for limited write-endurance

– May lead to high write-variation

• Example: on using LRU replacement policy,
repeated writes happen to a hot-block

• This block may fail much early than remaining
blocks

• Thus, actual lifetime may be much shorter than
expected lifetime with uniform write distribution

9

An example from SPEC06 suite

• Lbm is most write-intensive among SPEC06 apps

• Povray has the highest intra-set and inter-set write-
variation

• Write-magnitude of Lbm = 41X that of Povray

• Worst-case writes with Lbm = 1/20X that of Povary

• Clearly, variation in writes is more crucial issue
than magnitude of writes.

10

EqualChance: Addressing Intra-set
Write Variation to Increase

Lifetime of Non-volatile Caches

11

EqualChance: Key Idea

• Conventional cache management policies aim to keep
hot-data in cache as much as possible

• Issue: This increases writes to blocks storing those data

12

EqualChance: Key Idea

• Conventional cache management policies aim to keep
hot-data in cache as much as possible

• Issue: This increases writes to blocks storing those data

• Idea: Periodically change block-location of those data

• Use counters to record writes on each set. After certain
number of writes, swap hot data with another cold data

• The candidate for swap may be invalid (called I-
shifting) or clean (called C-shifting)

• We do not swap with dirty data since this may itself be
frequently written

13

EqualChance
Wear-leveling Algorithm

14

Wear-leveling Algorithm 1 of 3

z= way-index of write-hit block
if(FlagBit[setId] is ON)
{
p = way-index of least recent invalid block in setId

if(p is found)
{

Swap data of ways z and p . Do not update LRU-information
}
else
{

q = way-index of least recent clean block in setId
if(q is found)

Swap data of ways z and q . Do not update LRU-information
else

ItIsNormalWrite = TRUE
}

}
else

ItIsNormalWrite = TRUE

15

Wear-leveling Algorithm 2 of 3

z= way-index of write-hit block
if(FlagBit[setId] is ON)
{
p = way-index of least recent invalid block in setId

if(p is found)
{

Swap data of ways z and p. Do not update LRU-information
}
else
{

q = way-index of least recent clean block in setId
if(q is found)

Swap data of ways z and q. Do not update LRU-information
else

ItIsNormalWrite = TRUE
}

}
else

ItIsNormalWrite = TRUE

I-shifting

16

Wear-leveling Algorithm 3 of 3

z= way-index of write-hit block
if(FlagBit[setId] is ON)
{
p = way-index of least recent invalid block in setId

if(p is found)
{

Swap data of ways z and p. Do not update LRU-information
}
else
{

q = way-index of least recent clean block in setId
if(q is found)

Swap data of ways z and q. Do not update LRU-information
else

ItIsNormalWrite = TRUE
}

}
else

ItIsNormalWrite = TRUE

C-shifting

17

a0 a1 I a2 a3 a4 a5 I

4,V,C 2,V,D 1,I,X 3,V,C 0,V,C 7,V,C 5,V,C 6,I,X

a0 I I a2 a3 a4 a5 a1

4,V,C 2,I,X 1,I,X 3,V,C 0,V,C 7,V,C 5,V,C 6,V,D

a0 a1 I a2 a3 a4 a5 I

4,V,C 0,V,D 2,I,X 3,V,C 1,V,C 7,V,C 5,V,C 6,I,X

If (write to a1

AND FlagBit ON)
If (write to a1

AND
FlagBit OFF)

I-shifting
(z=1, p=7)

Normal Write
(z=1)

CASE 1

a7

6,V,D

LEGEND

I

2,I,X

LRU-age (0: MRU,7:LRU)

Don’t care
(if data are invalid)

Dirty/Clean (D/C)
Valid/Invalid (V/I)

Invalid
data

18

a0 a1 I a2 a3 a4 a5 I

4,V,C 2,V,D 1,I,X 3,V,C 0,V,C 7,V,C 5,V,C 6,I,X

a0 I I a2 a3 a4 a5 a1

4,V,C 2,I,X 1,I,X 3,V,C 0,V,C 7,V,C 5,V,C 6,V,D

a0 a1 I a2 a3 a4 a5 I

4,V,C 0,V,D 2,I,X 3,V,C 1,V,C 7,V,C 5,V,C 6,I,X

If (write to a1

AND FlagBit ON)
If (write to a1

AND
FlagBit OFF)

a0 a1 a6 a2 a3 a4 a5 a7

4,V,C 0,V,D 1,V,C 3,V,C 2,V,C 7,V,D 5,V,C 6,V,D

a0 a1 a5 a2 a3 a4 a6 a7

4,V,C 0,V,D 1,V,C 3,V,C 2,V,C 7,V,D 5,V,D 6,V,D

If (write to a6

AND FlagBit ON)

I-shifting
(z=1, p=7)

Normal Write
(z=1)

C-shifting
(z=2, q=6)

CASE 1

CASE 2

19

Overhead Estimation

• Overhead comes due to extra counters and swap-buffer
(used for data-transfer)

• Let N= number of sets, M = associativity, L= block size,
G= # of tag-bits

• Overhead is < 0.15% of L2 cache size

• A small increase in LLC latency can be easily hidden

20

Salient Features

• Can be easily integrated with write-minimization
techniques

• No offline profiling is required.

• Does not increase DRAM traffic, unlike data-
invalidation techniques [1] ==> does not harm
performance or energy

• Wear-leveling has the side benefit of reducing thermal
density

[1]. J. Wang et al. “i2WAP: Improving non-volatile cache lifetime by reducing inter-and intra-
set write variations,” HPCA 2013.

21

Experiments

• Sniper x86-64 simulator, 300M instruction

• Single core simulations using 4MB L2.

• ReRAM (resistive RAM) L2, parameters from NVsim.

• Baseline: Shared LRU cache with no wear-leveling

• We measure energy of L2 cache, main memory and
algorithm.

22

Evaluation Metrics

• We show results on:

– Relative lifetime, relative performance and percentage energy
loss

– Coefficient of inter-set write-variation (InterV) and intra-set
write-variation (IntraV) [1]

23

Workloads

As(astar), Bw(bwaves), Bz(bzip2), Cd(cactusADM), Ca(calculix)
Dl(dealII), Ga(gamess), Gc(gcc), Gm(gemsFDTD), Gk(gobmk)
Gr(gromacs), H2(h264ref), Hm(hmmer), Lb(lbm), Ls(leslie3d)
Lq(libquantum), Mc(mcf), Mi(milc), Nd(namd), Om(omnetpp)

Pe(perlbench), Po(povray), Sj(sjeng), So(soplex), Sp(sphinx)
To(tonto), Wr(wrf), Xa(xalancbmk), Ze(zeusmp), Am(amg2013)

Co(CoMD), Lu(LULESH), Mk(MCCK), Ne(Nekbone)

34 Workloads
(all 29 SPEC2006 Benchmarks & 5 DoE applications)

24

Results

25

Large IntraV
in several
workloads

Corresponding
lifetime
improvement

Performance
and energy
losses are
negligible

26

Result Analysis

• EqualChance improves lifetime by 4.29X and reduces
IntraV significantly

• Lifetime improvement depends on the intra-set write
variation present in baseline program.

• Some programs show > 10X lifetime improvement.

• Performance close to baseline and energy loss < 2%.

• Parameter sensitivity results show that it works
well for wide range of algorithm and system
parameters.

27

Conclusion and
Future Work

• We presented
EqualChance for
improving lifetime of
NVM caches.

• Future Work

– Integration with other
techniques, e.g. write-
minimization.

– Extending to processors
with tens of cores

– Evaluation with
multithreaded workloads.

28

Thanks a lot!

http://ft.ornl.gov

mittals@ornl.gov

29

Extra Slides

30

31

