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Executive Summary
• Limited write endurance is a crucial limitation of NVMs

• Write-variation exacerbates this issue even further.

• We propose EqualChance, a technique to mitigate intra-
set write-variation in on-chip last-level caches.

• It periodically changes the physical block location of a 
data-item to achieve wear-leveling.

• Single core experiments, SPEC2006 and HPC workloads

• Results: EqualChance improves cache lifetime by 4.29X

• It has very small implementation and performance 
overhead
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Motivation: Processor Design Trends

• Core-count is 
increasing

• LLC size is increasing

Intel’s 32nm Sandy Bridge Core i7-3960X
15MB LLC
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Motivation: Need of SRAM Alternatives

• SRAM Limitations

– Scalability challenges

– Huge leakage power consumption

– Low density

• SRAM caches consume huge chip area and leakage 
power

• Power consumption restricts performance scaling

We need SRAM alternatives!
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NVMs vis-à-vis SRAM and eDRAM

SRAM eDRAM
STT-RAM

(NVM)
ReRAM
(NVM)

PCM
(NVM)

Cell-size (F2) 120-200 60-100 6-50 4-10 4-12

Write Endurance 1016 1016 4*1012 1011 108-109

Speed Very fast Fast
Fast read, slow 

write
Fast read, 
slow write

Slow read, 
very slow 

write

Leakage Power High Medium Low Low Low

Retention Period N/A 30-100 µs
N/A (unless 

relaxed) N/A N/A
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NVMs vis-à-vis SRAM and eDRAM

SRAM eDRAM
STT-RAM

(NVM)
ReRAM
(NVM)

PCM
(NVM)

Cell-size (F2) 120-200 60-100 6-50 4-10 4-12

Write Endurance 1016 1016 4*1012 1011 108-109

Speed Very fast Fast
Fast read, slow 

write
Fast read, 
slow write

Slow read, 
very slow 

write

Leakage Power High Medium Low Low Low

Retention Period N/A 30-100 µs
N/A (unless 

relaxed) N/A N/A

The write endurance of NVMs is orders of magnitude 
smaller than that of SRAM/eDRAM! 
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Write-variation issue in caches

• Conventional cache management policies 

– Optimize performance and energy.

– Do not account for limited write-endurance

– May lead to high write-variation
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Write-variation issue in caches

• Conventional cache management policies 

– Optimize performance and energy.

– Do not account for limited write-endurance

– May lead to high write-variation

• Example: on using LRU replacement policy, 
repeated writes happen to a hot-block

• This block may fail much early than remaining 
blocks

• Thus, actual lifetime may be much shorter than 
expected lifetime with uniform write distribution
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An example from SPEC06 suite

• Lbm is most write-intensive among SPEC06 apps

• Povray has the highest intra-set and inter-set write-
variation

• Write-magnitude of Lbm = 41X that of Povray

• Worst-case writes with Lbm = 1/20X that of Povary

• Clearly, variation in writes is more crucial issue 
than magnitude of writes. 
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EqualChance: Addressing Intra-set 
Write Variation to Increase 

Lifetime of Non-volatile Caches
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EqualChance: Key Idea

• Conventional cache management policies aim to keep 
hot-data in cache as much as possible

• Issue: This increases writes to blocks storing those data
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EqualChance: Key Idea

• Conventional cache management policies aim to keep 
hot-data in cache as much as possible

• Issue: This increases writes to blocks storing those data

• Idea: Periodically change block-location of those data

• Use counters to record writes on each set. After certain 
number of writes, swap hot data with another cold data

• The candidate for swap may be invalid (called I-
shifting) or clean (called C-shifting)

• We do not swap with dirty data since this may itself be 
frequently written
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EqualChance
Wear-leveling Algorithm
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Wear-leveling Algorithm 1 of 3

z= way-index of write-hit block
if( FlagBit[setId] is ON)
{
p = way-index of least recent invalid block in setId

if(p is found)
{

Swap data of ways z and p . Do not update LRU-information
} 
else
{

q = way-index of least recent clean block in setId
if(q is found)

Swap data of ways z and q . Do not update LRU-information 
else 

ItIsNormalWrite = TRUE
}

}
else

ItIsNormalWrite = TRUE
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Wear-leveling Algorithm 2 of 3

z= way-index of write-hit block
if(FlagBit[setId] is ON)
{
p = way-index of least recent invalid block in setId

if(p is found)
{

Swap data of ways z and p. Do not update LRU-information
} 
else
{

q = way-index of least recent clean block in setId
if(q is found)

Swap data of ways z and q. Do not update LRU-information 
else 

ItIsNormalWrite = TRUE
}

}
else

ItIsNormalWrite = TRUE

I-shifting
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Wear-leveling Algorithm 3 of 3

z= way-index of write-hit block
if(FlagBit[setId] is ON)
{
p = way-index of least recent invalid block in setId

if(p is found)
{

Swap data of ways z and p. Do not update LRU-information
} 
else
{

q = way-index of least recent clean block in setId
if(q is found)

Swap data of ways z and q. Do not update LRU-information 
else 

ItIsNormalWrite = TRUE
}

}
else

ItIsNormalWrite = TRUE

C-shifting
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a0 a1 I a2 a3 a4 a5 I

4,V,C 2,V,D 1,I,X 3,V,C 0,V,C 7,V,C 5,V,C 6,I,X

a0 I I a2 a3 a4 a5 a1

4,V,C 2,I,X 1,I,X 3,V,C 0,V,C 7,V,C 5,V,C 6,V,D

a0 a1 I a2 a3 a4 a5 I

4,V,C 0,V,D 2,I,X 3,V,C 1,V,C 7,V,C 5,V,C 6,I,X

If (write to a1 

AND  FlagBit ON)
If (write to a1 

AND  
FlagBit OFF)

I-shifting
(z=1, p=7)

Normal Write
(z=1)

CASE 1

a7

6,V,D

LEGEND

I

2,I,X

LRU-age  (0: MRU,7:LRU)

Don’t care
(if data are invalid)

Dirty/Clean (D/C)
Valid/Invalid (V/I)

Invalid 
data
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a0 a1 I a2 a3 a4 a5 I

4,V,C 2,V,D 1,I,X 3,V,C 0,V,C 7,V,C 5,V,C 6,I,X

a0 I I a2 a3 a4 a5 a1

4,V,C 2,I,X 1,I,X 3,V,C 0,V,C 7,V,C 5,V,C 6,V,D

a0 a1 I a2 a3 a4 a5 I

4,V,C 0,V,D 2,I,X 3,V,C 1,V,C 7,V,C 5,V,C 6,I,X

If (write to a1 

AND  FlagBit ON)
If (write to a1 

AND  
FlagBit OFF)

a0 a1 a6 a2 a3 a4 a5 a7

4,V,C 0,V,D 1,V,C 3,V,C 2,V,C 7,V,D 5,V,C 6,V,D

a0 a1 a5 a2 a3 a4 a6 a7

4,V,C 0,V,D 1,V,C 3,V,C 2,V,C 7,V,D 5,V,D 6,V,D

If (write to a6 

AND  FlagBit ON)

I-shifting
(z=1, p=7)

Normal Write
(z=1)

C-shifting
(z=2, q=6)

CASE 1

CASE 2
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Overhead Estimation

• Overhead comes due to extra counters and swap-buffer 
(used for data-transfer)

• Let N= number of sets, M = associativity, L= block size, 
G= # of tag-bits 

• Overhead is < 0.15% of L2 cache size

• A small increase in LLC latency can be easily hidden
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Salient Features

• Can be easily integrated with write-minimization 
techniques 

• No offline profiling is required.

• Does not increase DRAM traffic, unlike data-
invalidation techniques [1] ==> does not harm 
performance or energy

• Wear-leveling has the side benefit of reducing thermal 
density

[1]. J. Wang et al. “i2WAP: Improving non-volatile cache lifetime by reducing inter-and intra-
set write variations,” HPCA 2013.
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Experiments

• Sniper x86-64 simulator, 300M instruction 

• Single core simulations using 4MB L2.

• ReRAM (resistive RAM) L2, parameters from NVsim.

• Baseline: Shared LRU cache with no wear-leveling

• We measure energy of L2 cache, main memory and 
algorithm.
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Evaluation Metrics

• We show results on:

– Relative lifetime, relative performance and percentage energy 
loss

– Coefficient of inter-set write-variation (InterV) and intra-set 
write-variation (IntraV) [1]
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Workloads

As(astar), Bw(bwaves), Bz(bzip2), Cd(cactusADM), Ca(calculix)
Dl(dealII), Ga(gamess), Gc(gcc), Gm(gemsFDTD), Gk(gobmk)
Gr(gromacs), H2(h264ref), Hm(hmmer), Lb(lbm), Ls(leslie3d)
Lq(libquantum), Mc(mcf), Mi(milc), Nd(namd), Om(omnetpp) 

Pe(perlbench), Po(povray), Sj(sjeng), So(soplex), Sp(sphinx)
To(tonto), Wr(wrf), Xa(xalancbmk), Ze(zeusmp), Am(amg2013)

Co(CoMD), Lu(LULESH), Mk(MCCK), Ne(Nekbone)

34 Workloads
(all 29 SPEC2006 Benchmarks & 5 DoE applications)
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Results
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Large IntraV
in several 
workloads

Corresponding 
lifetime 
improvement

Performance 
and energy 
losses are 
negligible 
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Result Analysis

• EqualChance improves lifetime by 4.29X and reduces 
IntraV significantly

• Lifetime improvement depends on the intra-set write 
variation present in baseline program.

• Some programs show > 10X lifetime improvement.

• Performance close to baseline and energy loss < 2%.

• Parameter sensitivity results show that it works 
well for wide range of algorithm and system 
parameters.
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Conclusion and 
Future Work

• We presented 
EqualChance for 
improving lifetime of 
NVM caches.

• Future Work

– Integration with other 
techniques, e.g. write-
minimization.

– Extending to processors 
with tens of cores

– Evaluation with 
multithreaded workloads.
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Thanks a lot!

http://ft.ornl.gov

mittals@ornl.gov
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Extra Slides
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