Towards illuminating a Censorship Monitor's Model to Facilitate Evasion

Sheharbano Khattak*, *Mobin Javed**, Philip D. Anderson* and Vern Paxson**

- * Independent Researcher
- ◆ U.C. Berkeley
- **★** International Computer Science Institute

In the next 19.5 mins...

I'm going to talk about:

- How to Reverse Engineer a Censor Monitor:
 - Exhaustively probing stateful onpath censors to infer information about various elements

- And an exemplar:
 - Evasion vulnerabilities we found in the Great Firewall of China

A look at the Evasion landscape

Existing evasion tools:

- => Clayton et al. (2006)
 - ignore RSTs
- => WestChamber (2010)
 - send fake RSTs
- \Rightarrow Brdgrd
 - Exploit lack of TCP reassembly for TLS negotiations

Our Work:

- A systematic investigation of evasion opportunities
- Goals:
 - Require *expensive* changes to system's basic model to remedy vulnerabilities
 - Require only client-side or server-side traffic manipulation

Design of a Censor

What to Censor?

Mhat to Censors

Analysis Model
(how to look for sensitive stuff in traffic)

sensitive stuff in traffic)

How to execute censorship?

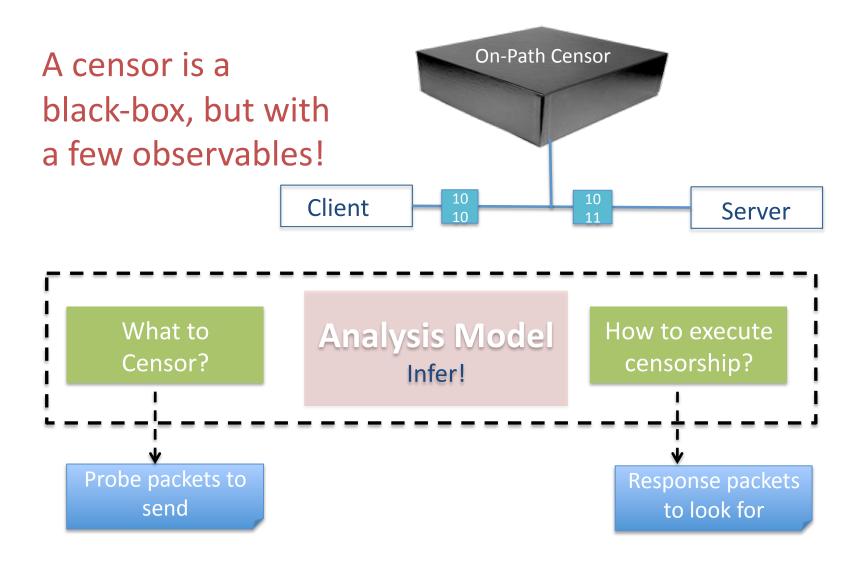
censorship?

- Tradeoff between completeness of analysis and scalability.
- Same problem of 'traffic reconstruction' as NIDS.

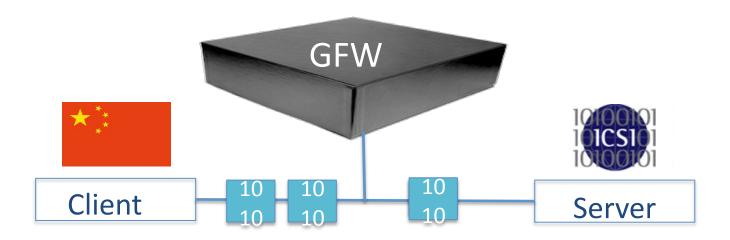
We draw our work mainly on the body of knowledge established by the NIDS community.

Probing a Censor to infer model

A censor is a black-box, but with a few observables!


Client

On-Path Censor


On-Path Censor

Server

Probing a Censor to infer model

Probing Methodology

- Test sensitive keywords (for e.g. Falungong) in IP /TCP segment/ HTTP request / HTTP Reply
- GFW censors only once it has seen a complete HTTP request.

Three RST packets with varying gaps in sequence numbers

Trigger Packets

GFW Response Packets

Model Elements to Probe

- 1. TCB Creation
- 2. IP/TCP Reassembly
- 3. State Management
- 4. TCB Teardown
- 5. Protocol Message Interpretation

(Both network and higher layers)

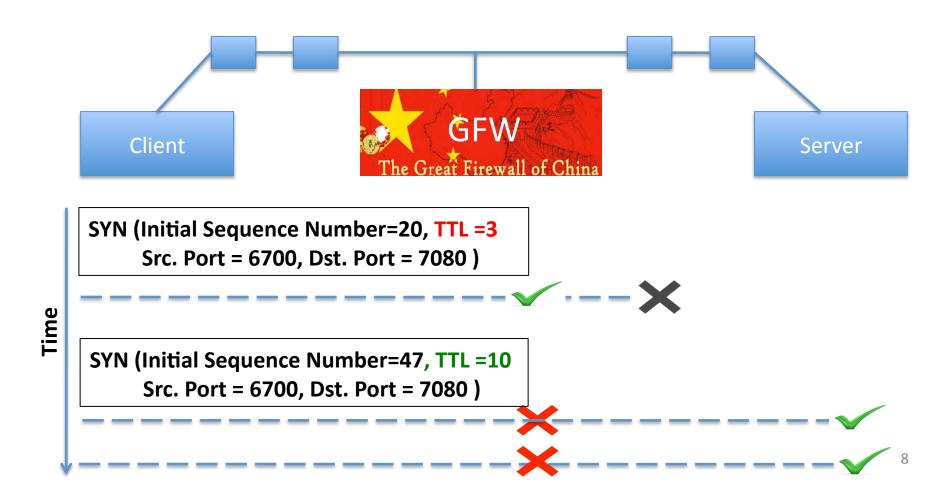
For this work we focused on stateful on-path monitors

1. TCB Creation

Three-way handshake or partial handshake?

Test 1a: SYN but no responding SYN-ACK

Test 1b: SYN-ACK but no initial SYN


Test 1c: Both SYN and SYN-ACK

(In all three tests, trigger packets follow handshake packets)

- Evasion Vulnerabilities:
 - SYN Flooding
 - Unsynchronized monitoring

1. TCB Creation (2)

Unsynchronized monitoring illustration

2. IP/TCP Reassembly

 How to resolve ambiguous cases of temporally separated overlapping fragments/segments?

- Tested each of the 18 possible cases for ambiguous overlap.
- GFW prefers:
 - Original IP fragment for all cases except for one case
 - Subsequent TCP segments for a subset of cases
 - Lacks reassembly capability for other TCP segment cases

2. IP/TCP Reassembly

 How to resolve ambiguous cases of temporally separated overlapping fragments/segments?

Example: 🖺

To evade: Send sensitive keywords in overlapping fragments/ segments that evade GFW's reassembly policy!! (For evasion to work, server must reassemble as expected.)

- GFW prefers:
 - Original IP fragment for all cases except for one case
 - Subsequent TCP segments for a subset of cases
 - Lacks reassembly capability for other TCP segment cases

3. State Management

- How long and how much state to keep?
- Send increasing amounts of time and volume of non-sensitive data prior to sensitive data
- GFW's state-keeping capabilities:
 - Without "holes": 10 hours (even with 1 GB+ worth of data)
 - With "holes": 1 hour/1 KB

3. State Management

How long and how much state to keep?

To evade: Exploit GFW's buffering capabilities.

DoS or cause it to evict state!!

- GFW's state-keeping capabilities:
 - Without "holes": 10 hours (even with 1 GB+ worth of data)
 - With "holes": 1 hour/1 KB

4. TCB Teardown

 How to determine parties have torn down connection?

Test 4a: require RST (A) from one party

Test 4b: require RST (A) from both parties

Test 4c: require FIN (A) from one party

Test 4d: require FIN (A) from both parties

- GFW tears down on:
 - FIN/RST packet (even ones without ACK bit set).

5. Protocol Message Interpretation

- Does the censor perform protocol validation?
 - Does it respect what different header field/values mean?
 - Is it complete?
 - How does it deal with ambiguous messages?
- Layer-by-layer header walk trying out possible values of each header field
- Here we report only interesting ones

5. Protocol Message Interpretation

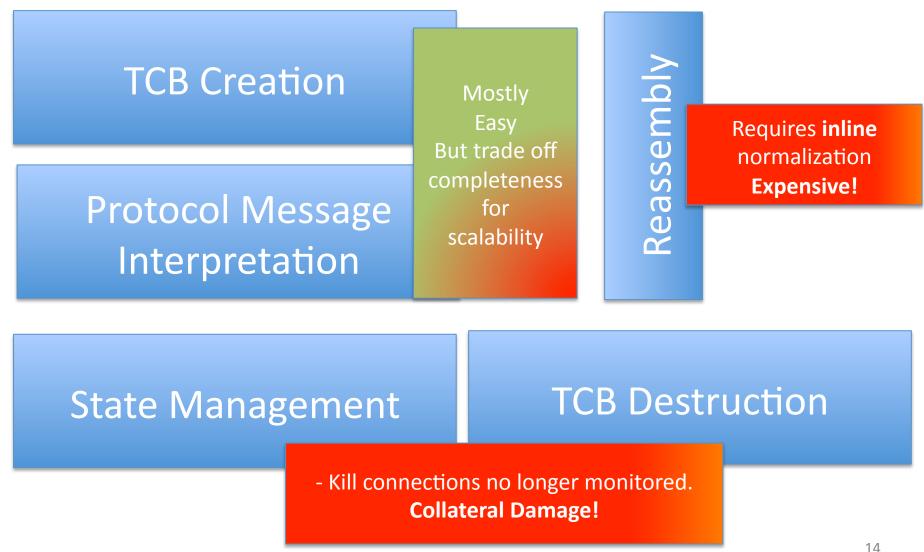
TCP Exemplars:

- GFW accepts packets with incorrect TCP checksums
- GFW accepts packets that lack
 ACK/ have wrong ACK

5. Protocol Message Interpretation

TCP Exemplars:

- GFW acc
 incorrect 1
- GFW accACK/ have


HTTP Exemplars (see paper for more):

 RFC Deviant HTTP Requests: Extra space between Request method and Request URI bypasses inspection

GET _ _ /falungong.html HTTP/1.1\r\n

GFW inspects only first 2K bytes into the request URI

Cost of Fixing Evasion Bugs

Future Work

- Automated Model Extraction
 - For a given censor over time
 - New censors in new countries
 - Assessment of Analysis Inconsistencies
- Evasion Tools

Q&A!