Making Geo-Replicated Systems Fast as Possible
Consistent when Necessary

Cheng Li*, Daniel Porto', Allen Clement’
Johannes Gehrke*, Nuno Preguica$, Rodrigo Rodrigues?

Max Planck Institute for Software Systems",
CITI / Universidade Nova de Lisboa?, Cornell University*

Max
Planck
%v Institute
for
Software Systems

Higher latency => Less money

Injected latency to user responses (ms)

0 500 1000 1500 2000 2500

Changein)
revenueper \ Mcrosoft
user (%) 5 b" |9
2 N
7 S\ \
{ N
o T

T~

[source: E. Schurman and J. Brutlag, “Performance Related Changes and their User Impact”. Talk at Velocity ‘09]

M
PI:)r;ck

10/9/2012 Cheng Li@OSDI'12 2 % Ifnstltute
or

Software Systems

Geo-replication is needed!

* Geo-replication is used by major providers of Internet
services.
— e.g., Google, Amazon, Facebook, etc

M
Pli)r()ck
10/9/2012 Cheng Li@OSDI'12 3 @ Ifr;?ntute

Software Systems

Consistency or performance?

Strong consistency Eventual consistency
= e.g., Paxos [tocs9g) = e.g., Dynamo [sosr07], Bayou [sosp95)
= Pros: Natural semantics = Pros: Low latency
= Cons: High latency = Cons: Undesirable behaviors

¢ -

Can we build geo-replicated systems
that are both fast and consistent?

: M
F’I:)r?ck
10/9/2012 Cheng Li@OSDI'12 4 % |f ttttttt e
or

SSSSSSSSSSSSSSS

Outline

* Mixing strong and eventual consistency in a
single system

* Transforming applications to safely leverage
eventual consistency when possible

e Evaluation

Pla)r?ck
10/9/2012 Cheng Li@OSDI'12 5 % lfr;srtltute
Software Systems

Balance strong/eventual consistency

Strong consistency Eventual consistency
R1 Al Bl
l '
R2 7
l A2
A\ 4
R3 B3

M
F’I:)r;ck
10/9/2012 Cheng Li@OSDI'12 6 @ it

SSSSSSSSSSSSSSS

Balance strong/eventual consistency

Strong consistency Eventual consistency
R1 Al Bl
l B2
R2 7
l A2
A\ 4
R3 B3

M

PIZ;ck
10/9/2012 Cheng Li@OSDI’12 7 @ |fr;sr ttttt o

SSSSSSSSSSSSSSS

Balance strong/eventual consistency

Strong consistency RedBlue Eventual consistency
. *r!mahon for strong consistency oniy wEen n!essary
R1 Al Bl Al Bl
l R1 B2 B2
R2 ‘1' ‘1' v

l A2 R2 A2
R3 R3 B3 B3
Max
Planck
10/9/2012 Cheng LI@OSDI'12 g l - I Inetiate

for
Software Systems

Gemini coordination system

Alice Bob
R1 R2

\It

[Cool R1 jtor [Cootor }

Cross-site
Storage
engine

communication
Max

’ F’Iarlwck
10/9/2012 Cheng Li@OSDI'12 9 % Ifnstltute

Software Systems

Storage
engine

Gemini coordination system

&

Alice

R3

|

Cool R3 tor]

Storage
engine

Al

R1

10/9/2012

Al Bl

v v

R1 B2

v 2

Bl1| B2 | R2

Cross-site
communication

~

Bob

B4

[Coator }

Storage

e

ngine

Bl

B2

Al

R1

1[r2]

Cheng Li@OSDI’'12 10

Planck
Institute
for

Max

Software Systems

A RedBlue consistent bank system

Max

(Plaqck
10/9/2012 Cheng Li@0OSDI'12 11 % lfnstltute

Software Systems

A RedBlue consistent bank system

*_

" Problem: Different execution
orders lead to divergent state.

= Cause: accrueinterest doesn’t
commute with deposit.

" Implication: Convergence
requires Red, but Red is slow.

v v

o

10/9/2012 Cheng Li@OSDI’'12 12

| float balance, interest;

‘eposit(float m){
balance = balance + m;

ccrueinterest(){

float delta=balance x interest;
balance=balance + delta;

ithdraw(float m){
if(balance-m>=0)
balance=balance - m;
else
print “Error”

Max

£
Planck
% Institute
for
Software Systems

Outline

* Transforming applications to safely leverage
eventual consistency when possible

’ F’Ia)r?ck
10/9/2012 Cheng LI@OSDI'12 13 - ot

Problem of replicating operations

Initial: balance = 100, interest = 0.05

Alice in EU Bob in US

l deposit(20): +20 accrueinterest(): +5

Two different decisions
made by the same

operation
A 4

- = -

l accrueinterest(): +6

Max

’ F’Iarlwck
10/9/2012 Cheng LI@OSDI'12 14 - ot

Software Systems

Generator/Shadow operation

* Intuitively, the execution of accrueinterest can be
divided into:

— A generator operation
e decides how much interest to be accrued
* has no side effects

— A shadow operation
e adds the decided interest to the balance

Max

Plaqck
10/9/2012 Cheng Li@OSDI'12 15 @ lfnstltute

Software Systems

Generate once, shadow everywhere

&

Alice

Al

2. Generator produces a colored
shadow h(d,S).

G g h(d,S) }

Cross-site
communication

1. Generator makes a decision d
based on a local state S.

Storage
engine

3. Shadow is applied at all sites.

10/9/2012 Cheng Li@OSDI’'12 16

~

Bob

[Coordinator }

Storage
engine

Max

Planck
Institute
for

Software Systems

Bank generator/shadow
operations

Original/Generator operation

Shadow operation

» balance = balance + m;

accrueinterest’(float delta){

balance=balance + delta;

{ balance=balance - m;

deposit(float m){ deposit’(float m){
produces
balance = balance + m;
} }
accrueinterest(){
float delta=balance x interest; produces
balance=balance + delta; >
} }
ces| .
withdraw(float m){ produ =1 withdrawAck’(float m)
if(balance-m>=0) .
balance=balance - m; }
else e Produces
print “Error” == withdrawFail’(){
} }
10/9/2012 Cheng Li@OSDI’12

: ry

Max

Planck

Institute

for

Software Systems

Bank generator/shadow

operations

Original/Generator operation

deposit(float m){
produces

Shadow operation

deposit’(float m){

balance = balance + m;

}

ces

All four shadow banking s

operations commute with
each other! -es

=

if(balance-m>=0) .=

balance=balance - m;

ro
else — Produces

print “Error”

}

10/9/2012 Cheng Li@OSDI’'12

}

» balance = balance + m;

o

accrueinterest’(float delta)

}

{ +delta }
balance=balance + delta;

}

=l withdrawAck’(float m)

-m
{ balance=balance - m ;[J

= WithdrawFail’(){

}

18

L3

Max

Planck

Institute

for

Software Systems

Fast and consistent bank

Initial: balance = 100, interest = 0.05

Alice in EU Bob in US
w >depOSIt(20) :+20
l +20

accrueinterest(): +

U
w Generator op
l l Shadow op
L 125 N 0 4

M
Plz)r;ck

10/9/2012 Cheng LI@OSDI'12 19 - it
or

Software Systems

Not so fast ...

Initial: balance = 100, interest = 0.05

Alice in EU Bob in US

0 ’de osit(20) : +20 00 > ' :
Lo P (20) S accrueinterest(): +5

|] -

[[

w withdraw(100): -100 wwithdrawww: -80

M
Pl:’(‘]ck

10/9/2012 Cheng LI@OSDI'12 20 - it
or

Software Systems

Not so fast ...

o

= Problem: Different execution orders
lead to a negative balance.

= Cause: Blue operations that potentially . 5
break invariants execute without
coordination.

" Implication: We must label successful
withdrawal (withdrawAck’) as Red.
A 4 A 4

(F’I:;Ck
10/9/2012 Cheng Li@OSDI'12 21 @ it
SSSSSSSSSSSSSSS

Which must be Red or can be Blue?

Ensuring state / a shadow /
convergence operation u

No

commutes
with all
others?

Ensuring invariant
preservation

breaks

Yes No
invariants?

’ F’Iarlwck
10/9/2012 Cheng Li@OSDI’'12 22 % Ifnstltute

Software Systems

Key ideas so far

 RedBlue consistency combines strong and eventual
consistency into a single system.

* The decomposition of generator/shadow operations
expands the space of possible Blue operations.

 Asimple rule for labeling is provably state
convergent and invariant preserving.

F’I:;ck
10/9/2012 Cheng Li@OSDI'12 23 @ nstiut
SSSSSSSSSSSSSSS

10/9/2012

Cheng Li@0OSDI'12

Evaluation

24

Max

Planck

Institute

for

Software Systems

Questions

 How common are Blue operations?

* Does RedBlue consistency improve user-observed
latency?

* Does throughput scale with the number of sites?

Max

’ F’Iarlwck
10/9/2012 Cheng Li@OSDI'12 25 % Ifnstltute

Software Systems

Questions

e How common are Blue operations?

 Does RedBlue consistency improve user-observed
latency?

* Does throughput scale with the number of sites?

M
Pl:’;ck
10/9/2012 Cheng Li@OSDI'12 26 - e

Software Systems

Case studies

* Applications:
— Two e-commerce benchmarks: TPC-W, RUBIS
— One social networking app: Quoddy

Apps # Original update txns ﬁpBo:gféIZTo(i
TPC-W 7 0/7

RUBIS 5 o/
Quoddy 4 0/

M
PI:\)r;ck
10/9/2012 Cheng Li@OSDI'12 27 - e

Software Systems

Case studies

* Applications:
— Two e-commerce benchmarks: TPC-W, RUBIS

— One social networking app: Quoddy

Apps # Original update txns ﬁpBo::féiToi # Shadow ops ﬁpBo::féifa(i
TPC-W 7 0/7 16 14/2

RUBIS 5 0/5 9 7/2
Quoddy 4 0/4 4 4/0

M
P|2;Ck
10/9/2012 Cheng Li@OSDI'12 28 - e

Software Systems

How common are Blue operations?

Runtime Blue/Red ratio in different applications with
different workloads:

Originally
workload
Blue (%) Red(%)

Browsing mix 96.0 4.0

TPC-W Shopping mix 85.0 15.0
Ordering mix 63.0 37.0

RUBIS Bidding mix 85.0 15.0
Quoddy | a mix with 15% update 85.0 15.0

M
PI:\)r;ck
10/9/2012 Cheng Li@OSDI'12 29 - e

Software Systems

How common are Blue operations?

Runtime Blue/Red ratio in different applications with
different workloads:

Originally With shadow ops
workload
Blue (%) Red(%) Blue (%) Red(%)
Browsing mix 96.0 4.0 99.5 0.5
TPC-W Shopping mix 85.0 15.0 99.2 0.8
Ordering mix 63.0 37.0 93.6 6.4
RUBIS Bidding mix 85.0 15.0 97.4 2.6
Quoddy | a mix with 15% update 85.0 15.0 100 0

The vast majority of operations are Blue.
10/9/2012 Cheng Li@OSDI'12 30 &J prlttkt

Software Systems

Questions

* Does RedBlue consistency improve user-observed
latency?

* Does throughput scale with the number of sites?

Max

’ F’Iarlwck
10/9/2012 Cheng Li@OSDI'12 31 % Ifnstltute

Software Systems

Experimental setup

* Experiments with:
— TPC-W, RUBIS and Quoddy

 Deployment in Amazon EC2

— spanning 5 sites (US-East, US-West, Ireland, Brazil,
Singapore)

— locating users in all five sites and directing their requests
to closest server

F’I:;ck
10/9/2012 Cheng Li@OSDI'12 32 @ nstiut

Experimental setup

* Experiments with:
— TPC-W, RUBIS and Quoddy

 Deployment in Amazon EC2

— spanning 5 sites (US-East, US-West, Ireland, Brazil,
Singapore)

— locating users in all five sites and directing their requests
to closest server

’ F’Ia)r?ck
10/9/2012 Cheng Li@OSDI'12 33 % Ifnstltute

Does RedBlue consistency improve
user-observed latency?

W US-East W US-West mlireland ™ Brazil m Singapore

3000

2000
Latency

(ms)

1000

1-site original TPC-W 5-site TPC-W with Gemini

Average latency for users at all five sites

M
PI:\)r;ck
10/9/2012 Cheng Li@OSDI'12 34 - e

Software Systems

Does throughput scale with the
number of sites?

1600

1200

800
Request/s

400 -

0 _
1-site 1-site 2-site 3-site 4-site 5-site
Original Gemini Gemini Gemini Gemini Gemini

Peak throughput for different deployments

M
Plzzck
10/9/2012 Cheng Li@OSDI'12 35 @ | e

for
Software Systems

Conclusion

* RedBlue consistency allows strong consistency and
eventual consistency to coexist.

* Generator/shadow operation extends the space of
fast operations.

* A precise labeling methodology allows for systems to
be fast and behave as expected.

* Experimental results show our solution improves
both latency and throughput.

(PI:;CK
10/9/2012 Cheng Li@OSDI'12 36 % Lr;sr ttttt e

SSSSSSSSSSSSSSS

Making Geo-Replicated Systems Fast
as Possible, Consistent when Necessary

THANK YOU!

