Making Geo-Replicated Systems Fast as Possible Consistent when Necessary

Cheng Li[†], Daniel Porto^{†§}, Allen Clement[†]
Johannes Gehrke[‡], Nuno Preguiça[§], Rodrigo Rodrigues[§]

Max Planck Institute for Software Systems[†], CITI / Universidade Nova de Lisboa[§], Cornell University[‡]

Max
Planck
Institute
for
Software Systems

Higher latency => Less money

[source: E. Schurman and J. Brutlag, "Performance Related Changes and their User Impact". Talk at Velocity '09]

Geo-replication is needed!

- Geo-replication is used by major providers of Internet services.
 - e.g., Google, Amazon, Facebook, etc

Consistency or performance?

Strong consistency

■ e.g., Paxos [TOCS'98]

■ Pros: Natural semantics

Cons: High latency

Eventual consistency

• e.g., Dynamo [SOSP'07], Bayou [SOSP'95]

■ Pros: *Low latency*

Cons: Undesirable behaviors

Outline

- Mixing strong and eventual consistency in a single system
- Transforming applications to safely leverage eventual consistency when possible
- Evaluation

Balance strong/eventual consistency

Balance strong/eventual consistency

Balance strong/eventual consistency

Strong consistency RedBlue

Eventual consistency

- Low latency of eventual consistency when possible
- Coordination for strong consistency only when necessary

Gemini coordination system

9

Gemini coordination system

A RedBlue consistent bank system

A RedBlue consistent bank system

- Problem: Different execution orders lead to divergent state.
- Cause: accrueinterest doesn't commute with deposit.
- Implication: Convergence requires Red, but Red is slow.

126

125

12

```
float balance, interest;
 eposit(float m){
  balance = balance + m;
 <u>ccrueinterest()</u>{
  float delta=balance × interest;
  balance=balance + delta;
 tithdraw(float m){
  if(balance-m>=0)
    balance=balance - m;
  else
    print "Error"
```


Outline

- Mixing strong and eventual consistency in a single system
- Transforming applications to safely leverage eventual consistency when possible
- Evaluation

Problem of replicating operations

Initial: *balance* = *100*, *interest* = *0.05*

Generator/Shadow operation

- Intuitively, the execution of accrueinterest can be divided into:
 - A generator operation
 - decides how much interest to be accrued
 - has no side effects
 - A shadow operation
 - adds the decided interest to the balance

Generate once, shadow everywhere

Bank generator/shadow operations

Original/Generator operation

Shadow operation

```
deposit(float m){
  balance = balance + m;
accrueinterest(){
  float delta=balance × interest;
  balance=balance + delta;
withdraw(float m){
  if(balance-m>=0)
     balance=balance - m;
  else
    print "Error"
```

```
produces
produces |
produces
produces
```

```
deposit'(float m){
 balance = balance + m;
accrueinterest'(float delta){
  balance=balance + delta;
withdrawAck'(float m)
    { balance=balance - m;
withdrawFail'(){
```


Bank generator/shadow operations

Original/Generator operation Shadow operation deposit(float m){ deposit'(float m){ produces balance = balance + m; balance = balance + m; +m accrueinterest'(float delta){ ces +delta All four shadow banking balance=balance + delta; operations commute with each other! ces withdrawAck'(float m) -m { balance=balance - m; **if**(balance-m>=0) balance=balance - m; produces else withdrawFail'(){ print "Error" Planck

Fast and consistent bank

Initial: *balance* = 100, *interest* = 0.05

Not so fast ...

Initial: *balance* = 100, *interest* = 0.05

20

Not so fast ...

- **Problem**: Different execution orders lead to a negative balance.
- Cause: Blue operations that potentially break invariants execute without coordination.
- Implication: We must label successful withdrawal (withdrawAck ') as Red.

-55

): -80

Which must be Red or can be Blue?

Key ideas so far

- RedBlue consistency combines strong and eventual consistency into a single system.
- The decomposition of generator/shadow operations expands the space of possible Blue operations.
- A simple rule for labeling is provably state convergent and invariant preserving.

Evaluation

Questions

- How common are Blue operations?
- Does RedBlue consistency improve user-observed latency?
- Does throughput scale with the number of sites?

Questions

- How common are Blue operations?
- Does RedBlue consistency improve user-observed latency?
- Does throughput scale with the number of sites?

Case studies

• Applications:

- Two e-commerce benchmarks: TPC-W, RUBiS
- One social networking app: Quoddy

Apps	# Original update txns	# Blue/Red update ops
TPC-W	7	0/7
RUBiS	5	0/5
Quoddy	4	0/4

Case studies

Applications:

- Two e-commerce benchmarks: TPC-W, RUBiS
- One social networking app: Quoddy

Apps	# Original update txns	# Blue/Red update ops	# Shadow ops	# Blue/Red update ops
TPC-W	7	0/7	16	14/2
RUBiS	5	0/5	9	7/2
Quoddy	4	0/4	4	4/0

How common are Blue operations?

Runtime Blue/Red ratio in different applications with different workloads:

Apps	workload	Originally		
		Blue (%)	Red(%)	
TPC-W	Browsing mix	96.0	4.0	
	Shopping mix	85.0	15.0	
	Ordering mix	63.0	37.0	
RUBiS	Bidding mix	85.0	15.0	
Quoddy	a mix with 15% update	85.0	15.0	

How common are Blue operations?

Runtime Blue/Red ratio in different applications with different workloads:

Apps	اه م ما باسمین	Originally		With shadow ops	
	workload	Blue (%)	Red(%)	Blue (%)	Red(%)
TPC-W	Browsing mix	96.0	4.0	99.5	0.5
	Shopping mix	85.0	15.0	99.2	0.8
	Ordering mix	63.0	37.0	93.6	6.4
RUBiS	Bidding mix	85.0	15.0	97.4	2.6
Quoddy	a mix with 15% update	85.0	15.0	100	0

The vast majority of operations are Blue.

Questions

- How common are Blue operations?
- Does RedBlue consistency improve user-observed latency?
- Does throughput scale with the number of sites?

Experimental setup

- Experiments with:
 - TPC-W, RUBiS and Quoddy

- Deployment in Amazon EC2
 - spanning 5 sites (US-East, US-West, Ireland, Brazil, Singapore)
 - locating users in all five sites and directing their requests to closest server

Experimental setup

- Experiments with:
 - TPC-W, RUBiS and Quoddy

- Deployment in Amazon EC2
 - spanning 5 sites (US-East, US-West, Ireland, Brazil, Singapore)
 - locating users in all five sites and directing their requests to closest server

Does RedBlue consistency improve user-observed latency?

Average latency for users at all five sites

Does throughput scale with the number of sites?

Peak throughput for different deployments

Conclusion

- RedBlue consistency allows strong consistency and eventual consistency to coexist.
- Generator/shadow operation extends the space of fast operations.
- A precise labeling methodology allows for systems to be fast and behave as expected.
- Experimental results show our solution improves both latency and throughput.

Making Geo-Replicated Systems Fast as Possible, Consistent when Necessary

THANK YOU!