
How TubeMogul Handles over
One Trillion HTTP Requests a

Month
November 12th, 2015

Nicolas Brousse | Sr. Director Of Operations Engineering | nicolas@tubemogul.com

Who are we?

TubeMogul
● Enterprise software company for digital branding
● Over 27 Billions Ads served in 2014
● Over 30 Billions Ad Auctions per day
● Bid processed in less than 50 ms
● Bid served in less than 80 ms (include network round trip)
● 5 PB of monthly video traffic served

Who are we?

Operations Engineering
● Ensure the smooth day to day operation of the platform

infrastructure
● Provide a cost effective and cutting edge infrastructure
● Team composed of SREs, SEs and DBAs
● Managing over 2,500 servers (virtual and physical)

Our Infrastructure
Multiple locations with a mix of Public Cloud and On Premises

● Java (a lot!)
● MySQL
● Couchbase
● Vertica
● Kafka
● Storm
● Zookeeper, Exhibitor
● Hadoop, HBase, Hive
● Terracotta
● ElasticSearch, Logstash, Kibana
● Varnish
● PHP, Python, Ruby, Go...
● Apache httpd
● Nagios
● Ganglia

Technology Hoarders

● Graphite
● Memcached
● Puppet
● HAproxy
● OpenStack
● Git and Gerrit
● Gor
● ActiveMQ
● OpenLDAP
● Redis
● Blackbox
● Jenkins, Sonar
● Tomcat
● Jetty (embedded)
● AWS DynamoDB, EC2, S3...

High Level Technical Overview

Technical Challenges

● Tight day to day operations

● Configuration Management and Automation

● Change Management with Peer Review and CI

● Measure and Monitor a lot

How do we manage all this?

OnCall Team Process

Request based on
Dashboards, Monitoring,
Paging or Engineers.

Ticket categorized in two swimlanes:
● Production Support

○ High Priority: Top to Bottom
○ On-call 24/7 (follow the sun)
○ Incident are handled 1st
○ Maintenance are handled 2nd

● Developer Support
○ Best Effort: Top to Bottom
○ Long effort request moved to

Infrastructure pipeline

● Large Nagios installation
● Introducing Sensu for scalability and as an easy Monitoring API for Developers
● Centralized OnCall Dashboard

Alerting

● TL;DR doesn't matter as long as you keep the flexibility for your dev team

● We leverage AWS for many different workload and scenarios
○ Using EC2, DynamoDB, SQS, SES, SNS, RDS, SWF, etc.
○ Workload varies from ephemeral computes to always on

● We moved part of our low latency dependent workload out of AWS to our On
Premises Cloud
○ Data Center proximity to key partners
○ Performance Investigation and Tuning
○ Network Visibility
○ Business Accountability

Which Cloud Provider? Private or Public?

CloudMogul with OpenStack

Challenge of Low Latency Globally

● Geo based DNS isn't based on network performance
● Proximity to user is key

○ Reduce Latency of standard TCP Handshake
○ Reduce Latency of SSL Handshake

● Mobile Networks...
● Require a global footprint
● Large footprint means unlikely to benefit from TLS session resumption

How to ensure pixel delivery at 50ms globally on the 50th
percentile while keeping a small server footprint?

Leverage CDN for Fast Pixel Collection at the Edge

Further Improvement

● Leverage CDN capabilities even further
○ First layer of protection against DDoS
○ Fast.ly VCL is very powerful

● Evaluate routing solution based on RUM (Cedexis)
● Evaluate smarter DNS routing (NS1)

● Round Robin DNS is great
○ Until your DNS entries are too large and client start using DNS thru TCP

● In US West, we went from 31 EC2 instances (c3.2xlarge) to two SuperMicro
servers
○ 32 Cores E5-2667 v3 @ 3.20GHz and 128 GB RAM
○ Use baremetal and leveraging VLAN to access OpenStack Tenant

● Managing SSL session is the most consuming in our workload (CPU and RAM)
○ A TLS connection can use up to 64Kb RAM

● CPU Pinning for network interrupts (4 Core), HAproxy (28 Core)
○ Disable irqbalance
○ Various sysctl config tuning (TCP, VM)

● One frontend for HTTP and HTTPS
● Crossdomain.xml files are served directly by HAproxy (no call to backend)
● All logs sent directly in json to ELK
● Home made process (HAvOC) to generate config and scaling of backend

Load Balancing with HAproxy

● Ganglia / Graphite / Grafana / ELK

Graphing and Logging As A Service

Network Visibility: Catchpoint

Monitor from multiple location
globally, complex test, trace routes,
alerts, etc.

Network Visibility: Dyn Internet Intelligence

Alerts on bgp route changes, prefix
changes, latency variation, internet
disruptions, etc.

● 2008 - 2010: Use SVN, Bash scripts and custom templates.

● 2010: Managing about 250 instances. Start looking at Puppet.

● 2011: Puppet 0.25 then 2.7 by EOY on 400 servers with 2 contributors.

● 2012: 800 servers managed by Puppet. 4 contributors.

● 2013: 1,000 servers managed by Puppet. 6 contributors.

● 2014: 1,500 servers managed by Puppet. Introduced Continuous Delivery
Workflow. 9 contributors. Start 3.7 migration.

● 2015: 2,000 servers managed by Puppet. 13 contributors.

Five Years Of Puppet!

● 2000 nodes

● 225 unique nodes definition

● 1 puppetmaster

● 112 Puppet modules

Puppet Stats

● Virtual and Physical Servers Configuration : Master mode

● Building AWS AMI with Packer : Master mode

● Local development environment with Vagrant : Master mode

● OpenStack deployment : Masterless mode

Where and how do we use Puppet ?

Infrastructure As Code: Code Review?

● Gerrit, an industry standard : Eclipse, Google, Chromium, OpenStack,
WikiMedia, LibreOffice, Spotify, GlusterFS, etc...

● Fine Grained Permissions Rules
● Plugged to LDAP
● Code Review per commit
● Stream Events
● Use GitBlit
● Integrated with Jenkins and Jira
● Managing about 600 Git repositories

A Powerful Gerrit Integration

● 1 job per module
● 1 job for the manifests and hiera data
● 1 job for the Puppet fileserver
● 1 job to deploy

Continuous Delivery with Jenkins

Global Jenkins stats for the past year
● ~10,000 Puppet deployment
● Over 8,500 Production App Deployment

Plugin : github.com/jenkinsci/job-dsl-plugin

● Automate the jobs creation

● Ensure a standard across all the jobs

● Versioned the configuration

● Apply changes to all your jobs without pain

● Test your configuration changes

Jenkins job DSL : code your Jenkins jobs

https://github.com/jenkinsci/job-dsl-plugin

Team Awareness: HipChat Integration with Hubot

Team Awareness: HipChat Integration with more bots!

The Workflow

All This Wouldn't Be Possible Without a Strong Team.
Thank You.

OPS @ TubeMogul

SRE

Aleksey Mykhailov
Oleg Galitskiy

Brandon Rochon
Stan Rudenko
Julien Fabre

Joseph Herlant

SE

Alan Barnes
Aleksander Stepanov

Matt Cupples
Yurii Rochniak
Yurii Varvynets

Manasi Limbachiya

DBA
Alina Alexeeva

Cloud Engineer

Mykola Mogylenko
Pierre Gohon

Pierre Grandin

Nicolas Brousse @orieg

