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Networks are Complex

e No one knows what's going on




Finding the Strange & Unusual

e Or the new & unexpected

o ..and if it's different, it might be bad. =

* Outlier — Improbable data point in the expected distribution

* Anomaly — Data point generated by a different distribution %¢
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Anomaly & Outlier Tools

“If you want something done right, do it yourself.
— Charles-Guillaume Etienne
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Using Python

e Interpretable pseudocode
e Mature libraries.
e Easy to install

e Fast enough &
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Creating Tools for Outlier Detection

e Introducing a few tools written in Python

e Intended to answer interesting questions and scale well
e Easy to modify/improve to satisfy your curiosity

e A starting point for your own tools

e Code is available at:

http://github.com/EdgewiseNetworks/five-sigma
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Discover Bad Things Before Big Problems

e Keep track of netflows across machines and across time
e Well enough to recognize unusual things
e But too much information

e And make it tunable
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Standard Deviation

The amount of “spread” in a (usually Gaussian) distribution.
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Project Overview

1. Create a feed of typical netflows
e Based on real netflows but anonymized
e Format: timestamp, src_ip, src_port, dest_ip, dest_port, flow_count

2. Create a consumer for these netflows.

3. Create a number of consumer tools to track interesting statistics.
e Standard deviations

e Update period
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Examples Of Useful Information

1. Does an IP address keep scanning for new open ports?
2. Did an IP address suddenly get a lot busier than it’s ever been in the past?
3. Did an IP address suddenly get a lot busier than any other IP address?

4. Shouldn't this IP address have stopped doing new things by now?

N




Tools To Use: Sketching & Streaming

e Lots of data to keep track of

e But we're only interested in certain aspects of it
- Set cardinality — HyperLogLog
- Incremental means & standard deviations
- Online linear regression

e Make big data into small data
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Other Examples of Approximate Probabilistic Sketches

e Bloom Filter (set membership)

e Count-Min Sketch (counting items)

e MinHash (set intersection)

e Locality-Sensitive Hashing (LSH: nearest neighbors)

e Q-digest/T-digest (quantile distribution — MORE ABOUT THIS LATER)
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IpPortScanDetector

Q: Does an IP address keep scanning for new open ports?

Contains: {IP_address : HyperLogl.og} map
Each HLL counts distinct IP:port destinations.

At each period:
mean, sigma = Stdev(hll.cardinality() for every HLL)
For each IP address & HLL :
1f HLL.cardinality() > N sigmas above the mean:
report 1it.
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GrowthDetector

Q: Did an IP address suddenly get a lot busier than it’s ever been in the past?

Contains:
{IP_address : HyperLogl.og} — periodCardinalityMap

Each HLL counts distinct IP:port destinations over all time.
{IP_address : StdDev} — periodStatisticsMap

Each StdDev incrementally calculates means and stdevs.

At each period:
For each IP address & HLL & StdDev:
currCount = HLL.cardinality()
mean, sigma = StdDev.getMeanAndStdev ()
1f currCount > N sigmas above 1ts mean:
report 1it.

HLL.clear ()
StdDev.add(currCount, current period)




ExplosionDetector

Q: Did an IP address suddenly get a lot busier than any other IP address?

Contains:
{IP_address : HyperLogLog} — periodCardinalityMap
Each HLL counts distinct IP:port destinations in current period.

At each period:
mean, sigma = Stdev(hll.cardinality() for every HLL)
For each IP address, hll:
curr = hll.cardinality()
1f curr > N sigmas above the mean:
report 1it.
hll.clear()
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Host Stabilization
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HostStabilizationDetector
Q: Shouldn’t this IP address have stopped doing new things by now?

Contains:
{IP_address : HyperLogLog} — cardinalityMap

Each HLL counts distinct IP:port destinations over all time.
{IP_address : StdDev} — periodAverageMap

Each StdDev incrementally calculates means and stdevs.

{IP_address : IncrLinReg} — IncrementalLinearRegressionMap
Each StdDev incrementally calculates means and stdevs.

At each period:

For each IP address, HLL, StdDev, IncrLinReg:
N obs = HLL.cardinality()

slope, i1ntercept = IncrLinReg.estimate()
avg = StdDev.getMean()

N rem = -slope * avg
reportIfDisagree(N rem < tol, IP address.frozen)
IP address.setFrozen(N rem < tol)

{IncrLinReg, StdDev}.update(N obs, current period)




Demo Time!




But is it Gaussian?

e “Long-tail” or "fat-tail” distributions?

e Try power law or log-linear fitting
e And many others?
e But this can get complicated....

e Replace StdDev with tdigest.TDigest
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Conclusions

e Without the agonizing pain
 Python data science tools FTW
e Cool sketching & streaming data structures

o A little learning is a dangerous thing”
.. and a little statistics is even better!

e Only the beginning — lots of room for improvement
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The End
Thanks for attending!

http://github.com/EdgewiseNetworks/five-sigma

Suggested questions

1. How do I install Python, again?
2. What can I do with flow_counts in my nettlows?

3. Show me the calculus for estimating Nyem!
4. So, what is the real statistical distribution of that data?

5. How does HyperLogLog work?



