Five-sigma Network Events
(and how to find them)

John O'Neil
Edgewise Networks
Halloween, 2018

Networks are Complex

e No one knows what's going on

Finding the Strange & Unusual

e Or the new & unexpected

o ..and if it's different, it might be bad. =

* Outlier — Improbable data point in the expected distribution

* Anomaly — Data point generated by a different distribution %¢

N

Mr. Splanky

Anomaly & Outlier Tools

“If you want something done right, do it yourself.
— Charles-Guillaume Etienne

A s e T i o TR -

Using Python

e Interpretable pseudocode
e Mature libraries.
e Easy to install

e Fast enough &

N

Creating Tools for Outlier Detection

e Introducing a few tools written in Python

e Intended to answer interesting questions and scale well
e Easy to modify/improve to satisfy your curiosity

e A starting point for your own tools

e Code is available at:

http://github.com/EdgewiseNetworks/five-sigma

N

Discover Bad Things Before Big Problems

e Keep track of netflows across machines and across time
e Well enough to recognize unusual things
e But too much information

e And make it tunable

<l lﬂ

Standard Deviation

The amount of “spread” in a (usually Gaussian) distribution.

< _
o
56 ~ 107° m _
-
N
37205 ~ 10—3 S 34.1%| 34.1%
g _
_—
o

Project Overview

1. Create a feed of typical netflows
e Based on real netflows but anonymized
e Format: timestamp, src_ip, src_port, dest_ip, dest_port, flow_count

2. Create a consumer for these netflows.

3. Create a number of consumer tools to track interesting statistics.
e Standard deviations

e Update period

N

Examples Of Useful Information

1. Does an IP address keep scanning for new open ports?
2. Did an IP address suddenly get a lot busier than it’s ever been in the past?
3. Did an IP address suddenly get a lot busier than any other IP address?

4. Shouldn't this IP address have stopped doing new things by now?

N

Tools To Use: Sketching & Streaming

e Lots of data to keep track of

e But we're only interested in certain aspects of it
- Set cardinality — HyperLogLog
- Incremental means & standard deviations
- Online linear regression

e Make big data into small data

N

Other Examples of Approximate Probabilistic Sketches

e Bloom Filter (set membership)

e Count-Min Sketch (counting items)

e MinHash (set intersection)

e Locality-Sensitive Hashing (LSH: nearest neighbors)

e Q-digest/T-digest (quantile distribution — MORE ABOUT THIS LATER)

N

IpPortScanDetector

Q: Does an IP address keep scanning for new open ports?

Contains: {IP_address : HyperLogl.og} map
Each HLL counts distinct IP:port destinations.

At each period:
mean, sigma = Stdev(hll.cardinality() for every HLL)
For each IP address & HLL :
1f HLL.cardinality() > N sigmas above the mean:
report 1it.

N

GrowthDetector

Q: Did an IP address suddenly get a lot busier than it’s ever been in the past?

Contains:
{IP_address : HyperLogl.og} — periodCardinalityMap

Each HLL counts distinct IP:port destinations over all time.
{IP_address : StdDev} — periodStatisticsMap

Each StdDev incrementally calculates means and stdevs.

At each period:
For each IP address & HLL & StdDev:
currCount = HLL.cardinality()
mean, sigma = StdDev.getMeanAndStdev ()
1f currCount > N sigmas above 1ts mean:
report 1it.

HLL.clear ()
StdDev.add(currCount, current period)

ExplosionDetector

Q: Did an IP address suddenly get a lot busier than any other IP address?

Contains:
{IP_address : HyperLogLog} — periodCardinalityMap
Each HLL counts distinct IP:port destinations in current period.

At each period:
mean, sigma = Stdev(hll.cardinality() for every HLL)
For each IP address, hll:
curr = hll.cardinality()
1f curr > N sigmas above the mean:
report 1it.
hll.clear()

N

Host Stabilization

—dX

(.)) ~ e
e Assume an “exponential decay” of Y
new IP:port contacts over time Exponential Decay Function
e We know how many we’ve seen, o
but not how many are left. A\ —a=3
0.70 \ —a=6
e Can we estimate N_rem given 0.60 \\\\\ R
N_obs? Some calculus later ... why | oso \
yes, we can. R
0.20
0.10
N., =~ —slope(x;) X avg(x;) o [1
0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N

HostStabilizationDetector
Q: Shouldn’t this IP address have stopped doing new things by now?

Contains:
{IP_address : HyperLogLog} — cardinalityMap

Each HLL counts distinct IP:port destinations over all time.
{IP_address : StdDev} — periodAverageMap

Each StdDev incrementally calculates means and stdevs.

{IP_address : IncrLinReg} — IncrementalLinearRegressionMap
Each StdDev incrementally calculates means and stdevs.

At each period:

For each IP address, HLL, StdDev, IncrLinReg:
N obs = HLL.cardinality()

slope, i1ntercept = IncrLinReg.estimate()
avg = StdDev.getMean()

N rem = -slope * avg
reportIfDisagree(N rem < tol, IP address.frozen)
IP address.setFrozen(N rem < tol)

{IncrLinReg, StdDev}.update(N obs, current period)

Demo Time!

But is it Gaussian?

e “Long-tail” or "fat-tail” distributions?

e Try power law or log-linear fitting
e And many others?
e But this can get complicated....

e Replace StdDev with tdigest.TDigest

N

Conclusions

e Without the agonizing pain
 Python data science tools FTW
e Cool sketching & streaming data structures

o A little learning is a dangerous thing”
.. and a little statistics is even better!

e Only the beginning — lots of room for improvement

N

Y =

C A
L VY
WO R

==
S

The End
Thanks for attending!

http://github.com/EdgewiseNetworks/five-sigma

Suggested questions

1. How do I install Python, again?
2. What can I do with flow_counts in my nettlows?

3. Show me the calculus for estimating Nyem!
4. So, what is the real statistical distribution of that data?

5. How does HyperLogLog work?

