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Next Generation of Analytics

* Timely results, even if approximate

— Data deluge makes this necessary
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Approximation Dimensions

» Deadline: Maximize » Error: Minimize time
accuracy within deadline to get desired accuracy
“Pick the best ad to display “#cars sold to the nearest
within 2s” thousand”
l} | Optimal Scheduler | \L
Improve accuracy by 48% Speedup by 40%

*w.r.t. state-of-the-art schedulers (production workloads from
Facebook and Bing)




Scheduling Challenge

* Prioritize tasks
— Subset of tasks to complete

— #tasks » #slots (multi-waved jobs)
(NP-Hard but many known heuristics...)

» Straggler tasks
— Slowest task can be 8x slower than median task

— Speculation: Spawn a duplicate, earliest wins
e Google[OSDI’'04], FB[OSDI'08], Microsoft[OSDI’10]



Challenge: dynamically prioritize between
speculative & unscheduled tasks
to meet deadline/error bound




Opportunity Cost

Speculative copies consume extra resources
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Roadmap

1. Two natural scheduling designs
2. GRASS: Combining the two designs

3. Evaluation of GRASS



Greedy Scheduling (GS)

Greedily improve accuracy, i.e., earliest finishing task
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Resource Aware Scheduling (RAS)

Speculate only if it saves time and resources
[Accuracy = 8/9]
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Slot 1 |

Slot 2

GS vs. RAS
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Intuition:

Use RAS early in the job (be “conservative”),
switch to GS towards the end (be “aggressive”)



Theoretical Scheduling Model

* Multi-waved scheduling of tasks
— Constant wave-width
— Agnostic to fairness policies
— Heavy-tailed (Pareto) distribution of task durations

e Speculation: GS, RAS, Switching, Optimal

Theorem:

Using RAS when >2 waves of tasks remain,
and GS when £2 waves of tasks remain

is “near-optimal”




How to estimate two remaining waves?

e \WWave boundaries are not strict

— Non-uniform task durations

e \WWave-width is not constant

Start with RAS and switch to GS c/ose to the
deadline/error-bound




Learning the switching point
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* GS-only and RAS-only job samples
— “Exploration vs. Exploitation”
— Multi-armed bandit solution, € = 0.1
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GRASS (= GS + RAS) Scheduler

* Opportunity Cost in speculation for stragglers
— GS =2 Greedy Scheduling
— RAS - Resource Aware Scheduling

e Switch RAS—2>GS close to deadline/error-bound

— Learn switching point empirically from job samples

* Provably near-optimal in theoretical model



Implementation

— Modified Fair Scheduler quf’(ﬂ
— Job bins with GS-only and RAS-only samples

e Task Estimators

— Remaining time is extrapolated from data-to-process

* progress reports at 5% intervals

— New copy’s time is sampled from completed tasks



How well does GRASS perform?

 Workload from Facebook and Bing traces

— Hadoop and Dryad production jobs

— Added deadlines and error bounds

e Baselines: LATE & Mantri

oing

e 200 node EC2 deployment (m2.2xlarge instances)



Accuracy of deadline-bound jobs
improve by 47%

[ Gains hold across deadlines (lenient and stringent ) }
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GRASS is 22% better than statically
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Error-bound Jobs

e Overall speedup of 38% (optimal is 40%)

— Gains hold across all error bounds

e Exact jobs (0% error-bound) speed up by 34%

[Unified Straggler Mitigation }




Conclusion

Next gen. of analytics: Approximate but timely results
Challenge: Dynamic and unpredictable stragglers

GRASS = Conservative speculation early in the job;
aggressive towards its end

Evaluation with Hadoop & Spark
— Accuracy of deadline-bound jobs improve by 47%
— Error-bound jobs speed up by 38%



