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Next Generation of Analytics

• Timely results, even if approximate

– Data deluge makes this necessary



Optimal Scheduler

Approximation Dimensions

� Error: Minimize time 

to get desired accuracy 

“#cars sold to the nearest 

thousand”

�Deadline: Maximize 

accuracy within deadline

“Pick the best ad to display 

within 2s”

*w.r.t. state-of-the-art schedulers (production workloads from 

Facebook and Bing)

Improve accuracy by 48% Speedup by 40%



• Prioritize tasks

– Subset of tasks to complete

– #tasks » #slots (multi-waved jobs)

(NP-Hard but many known heuristics…)

• Straggler tasks

– Slowest task can be 8x slower than median task

– Speculation: Spawn a duplicate, earliest wins

• Google[OSDI’04], FB[OSDI’08], Microsoft[OSDI’10]

Scheduling Challenge



Challenge: dynamically prioritize between 

speculative & unscheduled tasks

to meet deadline/error bound



Speculative copies consume extra resources

T3T3T3T3

Opportunity Cost

T2T2T2T2

timetimetimetime

Slot 1Slot 1Slot 1Slot 1

Slot 2Slot 2Slot 2Slot 2

Slot 3Slot 3Slot 3Slot 3 T1T1T1T1

55550000 101010109999

Is speculation 

worth the 

payoff?

T1T1T1T1



Roadmap

1. Two natural scheduling designs

2. GRASS: Combining the two designs

3. Evaluation of GRASS



Greedy Scheduling (GS)

Greedily improve accuracy, i.e., earliest finishing task
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Resource Aware Scheduling (RAS)

Speculate only if it saves time and resources
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GS vs. RAS
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Neither GS nor RAS is uniformly better



Intuition:

Use RAS early in the job (be “conservative”), 

switch to GS towards the end (be “aggressive”)



Theoretical Scheduling Model

• Multi-waved scheduling of tasks

– Constant wave-width

– Agnostic to fairness policies

– Heavy-tailed (Pareto) distribution of task durations

• Speculation: GS, RAS, Switching, Optimal

Theorem:

Using RAS when >2 waves of tasks remain,         
and GS when ≤2 waves of tasks remain

is “near-optimal”



How to estimate two remaining waves?

• Wave boundaries are not strict

– Non-uniform task durations

• Wave-width is not constant

Start with RAS and switch to GS close to the 

deadline/error-bound



GSRASRAS GSRAS

Learning the switching point

• GS-only and RAS-only job samples

– “Exploration vs. Exploitation”

– Multi-armed bandit solution, ɛ = 0.1
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GRASS (= GS + RAS) Scheduler

• Opportunity Cost in speculation for stragglers

– GS � Greedy Scheduling

– RAS � Resource Aware Scheduling

• Switch RAS�GS close to deadline/error-bound

– Learn switching point empirically from job samples

• Provably near-optimal in theoretical model



Implementation

• Hadoop 0.20.2 and Spark 0.7.3

– Modified Fair Scheduler

– Job bins with GS-only and RAS-only samples

• Task Estimators

– Remaining time is extrapolated from data-to-process

• progress reports at 5% intervals

– New copy’s time is sampled from completed tasks



How well does GRASS perform?

• Workload from Facebook and Bing traces

– Hadoop and Dryad production jobs

– Added deadlines and error bounds

• Baselines: LATE & Mantri

• 200 node EC2 deployment (m2.2xlarge instances)



Accuracy of deadline-bound jobs 

improve by 47%

Gains hold across deadlines (lenient and stringent )



GRASS is 22% better than statically 

picking GS or RAS

… and is near-optimal



Error-bound Jobs

• Overall speedup of 38% (optimal is 40%)

– Gains hold across all error bounds

• Exact jobs (0% error-bound) speed up by 34%

Unified Straggler Mitigation



Conclusion

• Next gen. of analytics: Approximate but timely results 

• Challenge: Dynamic and unpredictable stragglers

• GRASS – Conservative speculation early in the job; 

aggressive towards its end

• Evaluation with Hadoop & Spark

– Accuracy of deadline-bound jobs improve by 47%

– Error-bound jobs speed up by 38%


