
GRASS: Trimming Stragglers in

Approximation Analytics

Ganesh Ananthanarayanan, Michael Hung,

Xiaoqi Ren, Ion Stoica, Adam Wierman, Minlan Yu

Next Generation of Analytics

• Timely results, even if approximate

– Data deluge makes this necessary

Optimal Scheduler

Approximation Dimensions

� Error: Minimize time

to get desired accuracy

“#cars sold to the nearest

thousand”

�Deadline: Maximize

accuracy within deadline

“Pick the best ad to display

within 2s”

*w.r.t. state-of-the-art schedulers (production workloads from

Facebook and Bing)

Improve accuracy by 48% Speedup by 40%

• Prioritize tasks

– Subset of tasks to complete

– #tasks » #slots (multi-waved jobs)

(NP-Hard but many known heuristics…)

• Straggler tasks

– Slowest task can be 8x slower than median task

– Speculation: Spawn a duplicate, earliest wins

• Google[OSDI’04], FB[OSDI’08], Microsoft[OSDI’10]

Scheduling Challenge

Challenge: dynamically prioritize between

speculative & unscheduled tasks

to meet deadline/error bound

Speculative copies consume extra resources

T3T3T3T3

Opportunity Cost

T2T2T2T2

timetimetimetime

Slot 1Slot 1Slot 1Slot 1

Slot 2Slot 2Slot 2Slot 2

Slot 3Slot 3Slot 3Slot 3 T1T1T1T1

55550000 101010109999

Is speculation

worth the

payoff?

T1T1T1T1

Roadmap

1. Two natural scheduling designs

2. GRASS: Combining the two designs

3. Evaluation of GRASS

Greedy Scheduling (GS)

Greedily improve accuracy, i.e., earliest finishing task

T1T1T1T1

T2T2T2T2 T3T3T3T3
timetimetimetime

Slot 1Slot 1Slot 1Slot 1

Slot 2Slot 2Slot 2Slot 2

11110000

T4T4T4T4 T5T5T5T5 T6T6T6T6

6666

T7T7T7T7

Task ID T1 T2 T3 T4 T5 T6 T7 T8 T9

Time

remaining

5 --- --- --- --- --- --- --- ---

New copy 2 --- 1 1 1 1 1 1 3

T1T1T1T1
Deadline = 6

(at time =1)

Accuracy = 7/9Straggler

Resource Aware Scheduling (RAS)

Speculate only if it saves time and resources

timetimetimetime

T1T1T1T1

T2T2T2T2 T1T1T1T1

Slot 1Slot 1Slot 1Slot 1

Slot 2Slot 2Slot 2Slot 2

11110000

T6T6T6T6

T3T3T3T3

T4T4T4T4

T5T5T5T5

3333 6666

T7T7T7T7

T8T8T8T8

Task ID T1 T2 T3 T4 T5 T6 T7 T8 T9

Time

remaining

5 --- --- --- --- --- --- --- ---

New copy 2 --- 1 1 1 1 1 1 3

T1T1T1T1

Deadline = 6

(at time =1)

Accuracy = 8/9

One copy for 5s (vs.)

Two copies for 2s

Straggler

GS vs. RAS

T1T1T1T1

T2T2T2T2 T3T3T3T3
timetimetimetime

Slot 1Slot 1Slot 1Slot 1

Slot 2Slot 2Slot 2Slot 2

11110000 3333

T4T4T4T4 T5T5T5T5 T6T6T6T6

6666

T7T7T7T7

Deadline = 6

Accuracy = 7/9

timetimetimetime

T1T1T1T1

T2T2T2T2 T1T1T1T1

Slot 1Slot 1Slot 1Slot 1

Slot 2Slot 2Slot 2Slot 2

T6T6T6T6

T3T3T3T3

T4T4T4T4

T5T5T5T5

T7T7T7T7

T8T8T8T8
Deadline = 6

Accuracy = 8/9

Deadline = 3

Deadline = 3

Accuracy = 3/9T1T1T1T1

Accuracy = 2/9

GS

RAS

11110000 3333 6666

Neither GS nor RAS is uniformly better

Intuition:

Use RAS early in the job (be “conservative”),

switch to GS towards the end (be “aggressive”)

Theoretical Scheduling Model

• Multi-waved scheduling of tasks

– Constant wave-width

– Agnostic to fairness policies

– Heavy-tailed (Pareto) distribution of task durations

• Speculation: GS, RAS, Switching, Optimal

Theorem:

Using RAS when >2 waves of tasks remain,
and GS when ≤2 waves of tasks remain

is “near-optimal”

How to estimate two remaining waves?

• Wave boundaries are not strict

– Non-uniform task durations

• Wave-width is not constant

Start with RAS and switch to GS close to the

deadline/error-bound

GSRASRAS GSRAS

Learning the switching point

• GS-only and RAS-only job samples

– “Exploration vs. Exploitation”

– Multi-armed bandit solution, ɛ = 0.1

66664444

RAS[4s]+GS[2s]

RAS[5s]+GS[1s]

RAS[6s]

Switch

Deadline
5555

GRASS (= GS + RAS) Scheduler

• Opportunity Cost in speculation for stragglers

– GS � Greedy Scheduling

– RAS � Resource Aware Scheduling

• Switch RAS�GS close to deadline/error-bound

– Learn switching point empirically from job samples

• Provably near-optimal in theoretical model

Implementation

• Hadoop 0.20.2 and Spark 0.7.3

– Modified Fair Scheduler

– Job bins with GS-only and RAS-only samples

• Task Estimators

– Remaining time is extrapolated from data-to-process

• progress reports at 5% intervals

– New copy’s time is sampled from completed tasks

How well does GRASS perform?

• Workload from Facebook and Bing traces

– Hadoop and Dryad production jobs

– Added deadlines and error bounds

• Baselines: LATE & Mantri

• 200 node EC2 deployment (m2.2xlarge instances)

Accuracy of deadline-bound jobs

improve by 47%

Gains hold across deadlines (lenient and stringent)

GRASS is 22% better than statically

picking GS or RAS

… and is near-optimal

Error-bound Jobs

• Overall speedup of 38% (optimal is 40%)

– Gains hold across all error bounds

• Exact jobs (0% error-bound) speed up by 34%

Unified Straggler Mitigation

Conclusion

• Next gen. of analytics: Approximate but timely results

• Challenge: Dynamic and unpredictable stragglers

• GRASS – Conservative speculation early in the job;

aggressive towards its end

• Evaluation with Hadoop & Spark

– Accuracy of deadline-bound jobs improve by 47%

– Error-bound jobs speed up by 38%

