# **GRASS:** Trimming Stragglers in Approximation Analytics

Ganesh Ananthanarayanan, Michael Hung, Xiaoqi Ren, Ion Stoica, Adam Wierman, Minlan Yu



### Next Generation of Analytics

• Timely results, even if approximate

- Data deluge makes this necessary





### **Approximation Dimensions**

Deadline: Maximize accuracy within deadline

> "Pick the best ad to display within 2s"

Error: Minimize time to get desired accuracy "#cars sold to the nearest

thousand"



*\*w.r.t. <u>state-of-the-art</u> schedulers* (production workloads from Facebook and Bing)

## Scheduling Challenge

### • Prioritize tasks

- <u>Subset</u> of *tasks* to complete
- #tasks » #slots (multi-waved jobs)

(NP-Hard but many known heuristics...)

### • Straggler tasks

- Slowest task can be 8x slower than median task
- Speculation: Spawn a duplicate, earliest wins
  - Google[OSDI'04], FB[OSDI'08], Microsoft[OSDI'10]

<u>Challenge</u>: dynamically prioritize between speculative & unscheduled tasks to meet deadline/error bound

### **Opportunity Cost**

Speculative copies consume *extra* resources



### Roadmap

1. Two natural scheduling designs

2. GRASS: Combining the two designs

3. Evaluation of **GRASS** 

## <u>Greedy</u> Scheduling (GS)

Greedily improve accuracy, i.e., earliest finishing task



(at time =1 )

| Task ID           | T1 | T2 | Т3 | Т4 | T5 | Т6 | Т7 | Т8 | Т9 |
|-------------------|----|----|----|----|----|----|----|----|----|
| Time<br>remaining | 5  |    |    |    |    |    |    |    |    |
| New copy          | 2  |    | 1  | 1  | 1  | 1  | 1  | 1  | 3  |

## <u>Resource</u> <u>Aware</u> <u>Scheduling</u> (RAS)

Speculate only if it saves time and resources



### GS vs. RAS



### **Intuition:**

## Use **RAS** early in the job (be "conservative"), switch to **GS** towards the end (be "aggressive")

## **Theoretical Scheduling Model**

- Multi-waved scheduling of tasks
  - Constant wave-width
  - Agnostic to fairness policies
  - Heavy-tailed (Pareto) distribution of task durations
- <u>Speculation:</u> GS, RAS, Switching, Optimal

### Theorem:

Using RAS when >2 waves of tasks remain, and GS when ≤2 waves of tasks remain is "near-optimal"

### How to estimate two remaining waves?

- Wave boundaries are not strict
   Non-uniform task durations
- Wave-width is not constant

Start with **RAS** and switch to **GS** *close* to the deadline/error-bound



- GS-only and RAS-only job samples
  - "Exploration vs. Exploitation"
  - Multi-armed bandit solution,  $\varepsilon = 0.1$

### GRASS (= GS + RAS) Scheduler

Opportunity Cost in speculation for stragglers

 – GS → <u>G</u>reedy <u>S</u>cheduling
 – RAS → <u>R</u>esource <u>A</u>ware <u>S</u>cheduling

Switch RAS→GS close to deadline/error-bound
 Learn switching point empirically from job samples

• Provably near-optimal in theoretical model

### Implementation

Hadoop 0.20.2 and Spark 0.7.3

– Modified Fair Scheduler

– Job bins with **GS**-only and **RAS**-only samples

- Task Estimators
  - Remaining time is extrapolated from data-to-process
    - progress reports at 5% intervals

- New copy's time is sampled from completed tasks

## How well does GRASS perform?

- Workload from Facebook and Bing traces
  - Hadoop and Dryad production jobs
  - Added deadlines and error bounds
- <u>Baselines:</u> <u>LATE</u> & <u>Mantri</u>
   <u>facebook</u>
- 200 node EC2 deployment (m2.2xlarge instances)

### Accuracy of deadline-bound jobs improve by 47%



6-10

Deadline (%)

11-15

16-20

5

0

2-5

### **GRASS** is 22% better than statically picking GS or RAS ... and is near-optimal GS-only GRASS RAS-only 60 50 40 30

Improvement (%) in Average Accuracy 20 10 0 < 50 51-500 > 501 Job Bin (#Tasks)

### **Error-bound Jobs**

- Overall speedup of 38% (optimal is 40%)
   Gains hold across all error bounds
- Exact jobs (0% error-bound) speed up by 34%

**Unified Straggler Mitigation** 

### Conclusion

- Next gen. of analytics: *Approximate* but timely results
- <u>Challenge</u>: Dynamic and unpredictable stragglers

 GRASS – Conservative speculation early in the job; aggressive towards its end

- Evaluation with Hadoop & Spark
  - Accuracy of deadline-bound jobs improve by 47%
  - Error-bound jobs speed up by 38%