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Hardware trends

 Main memory is cheap
 100 GB – 1 TB per server

 10 – 100 TBs in a small cluster

 New data centre networks
 40 Gbps throughput (100 this year)

 1-3 µs latency

 RDMA primitives
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Remote direct memory access

 Read / write remote memory
 NIC performs DMA requests

 FaRM uses RDMA extensively
 Reads to directly read data

 Writes into remote buffers for messaging

 Great performance
 Bypasses the kernel

 Bypasses the remote CPU

RAM CPU NIC

Machine A

RAM CPU NIC

Machine B

Network

DMA

DMA
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Applications

 Data centre applications
 Irregular access patterns

 Latency sensitive

 Data serving
 Key-value store

 Graph store

 Enabling new applications
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Paper

 RDMA communication

 Programming model

 Address space management

 Transactions and lock-free operations

 Hashtable
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How to program a modern cluster?

We have:
• TBs of DRAM

• 100s of CPU cores

• RDMA network

Desirable:
• Keep data in memory

• Access data using RDMA

• Collocate data and computation
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Traditional model
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Symmetric model
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Shared address space
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Transactions: simplify programming
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Optimizations: lock-free reads
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Optimizations: locality awareness
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Optimizations: locality awareness
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Transactions
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Traditional lock-free reads

VW

1. Lock 2. Update data

3. Unlock and increment

Update in 3 steps:

Header

version
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Traditional lock-free reads

VW

1. Read version

Read in 3 steps:

2. Read data

Consistent if versions in steps

1. and 3. are equal

Header

version
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3. Read version



Traditional lock-free reads

VW

Problem: read requires three network

accesses, so it is not well suited to RDMA

Header

version

64-bit version

to avoid

overflow
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FaRM lock-free reads

$ $ $V V V

1. Lock versions 2. Update data

3. Unlock and increment

W W W
Header

version

Use cache-line
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FaRM lock-free reads

$ $ $V V VW W W

One RDMA read of the whole object,

check that all versions are equal

Header

version

Cache-line

versions
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FaRM lock-free reads

$ $ $V V VW W W
Space efficiency:

16-bit cache-line

versions

tupdate_min= 40 ns

tread_max   = 40 ns * 216 * (1 – ε) = 2 ms
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To ensure cache line versions don’t overflow,

measure read time and discard it too long
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FaRM hashtable
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 Important building block
 FaRM makes it possible to easily

try out different designs

 Optimized for lookups
 One RDMA in the common case

 Good space utilization
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TAO [Bronson ‘13, Armstrong ‘13]

6 Mops/s/srv

(10x improvement)

42 µs average latency

(40 – 50x improvement)

 Facebook’s in-memory graph store

 Workload
 Read-dominated (99.8%)

 10 operation types

 FaRM implementation
 Nodes and edges are FaRM objects

 Lock-free reads for lookups

 Transactions for updates
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FaRM

 Platform for distributed computing
 Data is in memory

 RDMA

 Shared memory abstraction
 Transactions

 Lock-free reads

 Order-of-magnitude performance improvements
 Enables new applications
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