
FaRM: Fast Remote Memory
Aleksandar Dragojević, Dushyanth Narayanan,
Orion Hodson, Miguel Castro

Hardware trends

 Main memory is cheap
 100 GB – 1 TB per server

 10 – 100 TBs in a small cluster

 New data centre networks
 40 Gbps throughput (100 this year)

 1-3 µs latency

 RDMA primitives

2

Remote direct memory access

 Read / write remote memory
 NIC performs DMA requests

 FaRM uses RDMA extensively
 Reads to directly read data

 Writes into remote buffers for messaging

 Great performance
 Bypasses the kernel

 Bypasses the remote CPU

RAM CPU NIC

Machine A

RAM CPU NIC

Machine B

Network

DMA

DMA

3

0
1
2
3
4
5
6
7
8
9

10

16 32 64 128 256 512 1024 2048

R
e
q

u
e
st

s
/

µ
s

/
se

rv
e
r

Transfer bytes (log)

RDMA RDMA msg TCP

4

1

10

100

16 32 64 128 256 512 1024 2048

A
v
e
ra

g
e
 l
a
te

n
cy

 µ
s

(l
o

g
)

Transfer bytes (log)

RDMA RDMA msg TCP

5

Applications

 Data centre applications
 Irregular access patterns

 Latency sensitive

 Data serving
 Key-value store

 Graph store

 Enabling new applications

6

Paper

 RDMA communication

 Programming model

 Address space management

 Transactions and lock-free operations

 Hashtable

7

How to program a modern cluster?

We have:
• TBs of DRAM

• 100s of CPU cores

• RDMA network

Desirable:
• Keep data in memory

• Access data using RDMA

• Collocate data and computation

8

Traditional model

9

Symmetric model

10

Shared address space

O1 O2 O3
O4

O5

O6

O7

O8

O9

11

Transactions: simplify programming

12

O1

O2

O3

O4

O5
O6

O7

O8

O9

Shared address space

O10WriteWrite

Alloc

Free

Optimizations: lock-free reads

13

O1

O2

O3

O4

O5
O6

O7

O8

O9

Shared address space

Optimizations: locality awareness

14

4

7

6

2

1

Optimizations: locality awareness

15

4

7
6

2

1

RPC

Local

Paper

 RDMA communication

 Programming model

 Address space management

 Transactions and lock-free operations

 Hashtable

16

Transactions

S1

S2

S3

RDMA

Execution Commit

Lock Validate

RDMA RDMA

Update and unlock

RDMA

Buffer writes

17

Traditional lock-free reads

VW

1. Lock 2. Update data

3. Unlock and increment

Update in 3 steps:

Header

version

18

Traditional lock-free reads

VW

1. Read version

Read in 3 steps:

2. Read data

Consistent if versions in steps

1. and 3. are equal

Header

version

19

3. Read version

Traditional lock-free reads

VW

Problem: read requires three network

accesses, so it is not well suited to RDMA

Header

version

64-bit version

to avoid

overflow

20

FaRM lock-free reads

$ $ $V V V

1. Lock versions 2. Update data

3. Unlock and increment

W W W
Header

version

Use cache-line

versions

21

FaRM lock-free reads

$ $ $V V VW W W

One RDMA read of the whole object,

check that all versions are equal

Header

version

Cache-line

versions

22

FaRM lock-free reads

$ $ $V V VW W W
Space efficiency:

16-bit cache-line

versions

tupdate_min= 40 ns

tread_max = 40 ns * 216 * (1 – ε) = 2 ms

23

To ensure cache line versions don’t overflow,

measure read time and discard it too long

Paper

 RDMA communication

 Programming model

 Address space management

 Transactions and lock-free operations

 Hashtable

24

FaRM hashtable

25

 Important building block
 FaRM makes it possible to easily

try out different designs

 Optimized for lookups
 One RDMA in the common case

 Good space utilization

2 3 4 5 8 12 16 20
0

50

100

150

200

L
o

o
k
u

p
s

/
µ

s

Servers

FaRM TCP

26

2 3 4 5 8 12 16 20
1

10

100

1000

10000

L
a
te

n
cy

 µ
s

(l
o

g
)

Servers

FaRM TCP

27

TAO [Bronson ‘13, Armstrong ‘13]

6 Mops/s/srv

(10x improvement)

42 µs average latency

(40 – 50x improvement)

 Facebook’s in-memory graph store

 Workload
 Read-dominated (99.8%)

 10 operation types

 FaRM implementation
 Nodes and edges are FaRM objects

 Lock-free reads for lookups

 Transactions for updates

28

FaRM

 Platform for distributed computing
 Data is in memory

 RDMA

 Shared memory abstraction
 Transactions

 Lock-free reads

 Order-of-magnitude performance improvements
 Enables new applications

29

