
FaRM: Fast Remote Memory
Aleksandar Dragojević, Dushyanth Narayanan,
Orion Hodson, Miguel Castro

Hardware trends

 Main memory is cheap
 100 GB – 1 TB per server

 10 – 100 TBs in a small cluster

 New data centre networks
 40 Gbps throughput (100 this year)

 1-3 µs latency

 RDMA primitives

2

Remote direct memory access

 Read / write remote memory
 NIC performs DMA requests

 FaRM uses RDMA extensively
 Reads to directly read data

 Writes into remote buffers for messaging

 Great performance
 Bypasses the kernel

 Bypasses the remote CPU

RAM CPU NIC

Machine A

RAM CPU NIC

Machine B

Network

DMA

DMA

3

0
1
2
3
4
5
6
7
8
9

10

16 32 64 128 256 512 1024 2048

R
e
q

u
e
st

s
/

µ
s

/
se

rv
e
r

Transfer bytes (log)

RDMA RDMA msg TCP

4

1

10

100

16 32 64 128 256 512 1024 2048

A
v
e
ra

g
e
 l
a
te

n
cy

 µ
s

(l
o

g
)

Transfer bytes (log)

RDMA RDMA msg TCP

5

Applications

 Data centre applications
 Irregular access patterns

 Latency sensitive

 Data serving
 Key-value store

 Graph store

 Enabling new applications

6

Paper

 RDMA communication

 Programming model

 Address space management

 Transactions and lock-free operations

 Hashtable

7

How to program a modern cluster?

We have:
• TBs of DRAM

• 100s of CPU cores

• RDMA network

Desirable:
• Keep data in memory

• Access data using RDMA

• Collocate data and computation

8

Traditional model

9

Symmetric model

10

Shared address space

O1 O2 O3
O4

O5

O6

O7

O8

O9

11

Transactions: simplify programming

12

O1

O2

O3

O4

O5
O6

O7

O8

O9

Shared address space

O10WriteWrite

Alloc

Free

Optimizations: lock-free reads

13

O1

O2

O3

O4

O5
O6

O7

O8

O9

Shared address space

Optimizations: locality awareness

14

4

7

6

2

1

Optimizations: locality awareness

15

4

7
6

2

1

RPC

Local

Paper

 RDMA communication

 Programming model

 Address space management

 Transactions and lock-free operations

 Hashtable

16

Transactions

S1

S2

S3

RDMA

Execution Commit

Lock Validate

RDMA RDMA

Update and unlock

RDMA

Buffer writes

17

Traditional lock-free reads

VW

1. Lock 2. Update data

3. Unlock and increment

Update in 3 steps:

Header

version

18

Traditional lock-free reads

VW

1. Read version

Read in 3 steps:

2. Read data

Consistent if versions in steps

1. and 3. are equal

Header

version

19

3. Read version

Traditional lock-free reads

VW

Problem: read requires three network

accesses, so it is not well suited to RDMA

Header

version

64-bit version

to avoid

overflow

20

FaRM lock-free reads

$ $ $V V V

1. Lock versions 2. Update data

3. Unlock and increment

W W W
Header

version

Use cache-line

versions

21

FaRM lock-free reads

$ $ $V V VW W W

One RDMA read of the whole object,

check that all versions are equal

Header

version

Cache-line

versions

22

FaRM lock-free reads

$ $ $V V VW W W
Space efficiency:

16-bit cache-line

versions

tupdate_min= 40 ns

tread_max = 40 ns * 216 * (1 – ε) = 2 ms

23

To ensure cache line versions don’t overflow,

measure read time and discard it too long

Paper

 RDMA communication

 Programming model

 Address space management

 Transactions and lock-free operations

 Hashtable

24

FaRM hashtable

25

 Important building block
 FaRM makes it possible to easily

try out different designs

 Optimized for lookups
 One RDMA in the common case

 Good space utilization

2 3 4 5 8 12 16 20
0

50

100

150

200

L
o

o
k
u

p
s

/
µ

s

Servers

FaRM TCP

26

2 3 4 5 8 12 16 20
1

10

100

1000

10000

L
a
te

n
cy

 µ
s

(l
o

g
)

Servers

FaRM TCP

27

TAO [Bronson ‘13, Armstrong ‘13]

6 Mops/s/srv

(10x improvement)

42 µs average latency

(40 – 50x improvement)

 Facebook’s in-memory graph store

 Workload
 Read-dominated (99.8%)

 10 operation types

 FaRM implementation
 Nodes and edges are FaRM objects

 Lock-free reads for lookups

 Transactions for updates

28

FaRM

 Platform for distributed computing
 Data is in memory

 RDMA

 Shared memory abstraction
 Transactions

 Lock-free reads

 Order-of-magnitude performance improvements
 Enables new applications

29

