~FaRM: Fast Remote Memory

Aleksandar Dragojevi¢, Dushyanth Narayanan,
Orion Hodson, Miguel Castro

Hardware trends

- Main memory is cheap

- 100 GB — 1 TB per server
- 10— 100 TBs in a small cluster

- New data centre networks

- 40 Gbps throughput (100 this year)
- 1-3 us latency
- RDMA primitives

Remote direct memory access

- Read / write remote memory
- NIC performs DMA requests

- FaRM uses RDMA extensively

- Reads to directly read data
- Writes into remote buffers for messaging

- Great performance

- Bypasses the kernel
- Bypasses the remote CPU

Machine A
DMA

RAM

CPU

NIC

Network

RAM

CPU

e

]

Machine B

DMA

Requests / us / server

ORrRLrNWPRAUITOYNOO OO

--RDMA -=RDMA msg - TCP

32 64 128 256 512 1024 2048
Transfer bytes (log)

4

©®RDMA ®RDMA msg <-TCP

100
S
= Ommmmmms === Ommmel o —— oo (T r====ms <
5
>
[T (0SS ——————— S
©
% o o— o o Y Py o—°
g
< 1
16 32 04 128 256 512 1024 2048

Transfer bytes (loQ)

5

Applications

- Data centre applications

- Irreqular access patterns
- Latency sensitive

- Data serving

- Key-value store
- Graph store

- Enabling new applications

Paper

- Programming model <

- Transactions and lock-free operations
- Hashtable

How to program a modern cluster?

We have: Desirable:

« TBs of DRAM « Keep data in memory

 100s of CPU cores Access data using RDMA
 RDMA network Collocate data and computation

e

> :
S

Traditional model

Servers: store data

</// o//@

Clients: execute application

v

w

Symmetric model

Access to local /\ /\ /\ /\
memory is N o S NS
much faster > > > >
Server CPUs

are mostly idle

with RDMA

Machines store data and execute application

10

Shared address space

Supports direct
RDMA of objects

03 Os

O1 02

Programmability
a welcome bonus

o)

|’

Ul

/

)

|(

</// o//@
</// ° /

</// &/

11

Transactions: simplity programming

General primitive |Shared address space
O7

Strong consistency: 02 O4 Os

serializability - " ~ t o100 X
Transparent: " Write t Write t t O10

e |location

Read "
. concurrency Read Read Free
e failures Alloc

Atomic execution of multiple operations

12

Optimizations: lock-Tree reads

Efficient: read is Shared address space
a single RDMA 07
| O2 O4
Strqng consistency: ~ > t =] | 0s 05
serializable
" t Read t

Harder to compose: Read

Read Read €ad

custom validation

Atomic execution of a single read

13

Optimizations: locality awareness

Optimizations: locality awareness

Collocate data

accessed together e
o &

Ship computation

to target data Local ﬁ @

Optimized (\ RPC (\

single-server NS < XS

transactions 0 0
N N

15

Paper

- Programming model

+ Transactions and lock-free operations

- Hashtable

Transactions

Buffer writes
NN . Lock Validate Update and unlock

NITLVRYE
]| o Y |

Executioni Commit

Traditional lock-free reads

Header

. W
version

Update in 3 steps: I I

1. Lock 2. Update data

3. Unlock and increment

18

Traditional lock-free reads

Header
version

W

Read Iin 3 steps: I

1.
3.

1

Read version 2. Read data

Read version

19

Consistent if versions in steps
1. and 3. are equal

Traditional lock-free reads

Header
version

64-bit version
to avoid
overflow
Problem: read requires three network
accesses, so it is not well suited to RDMA

20

FaRM lock-free reads

Header
version

Jse cache-ln I I I I I I

versions

1. Lock versions 2. Update data
3. Unlock and increment

21

FaRM lock-free reads

Header

version W 3 W 3 W S
-

Cache-line

versions

One RDMA read of the whole object,
check that all versions are equal

22

FaRM lock-free reads

Space efficiency:
16-bit cache-line |V $ W $ W $

versions —

To ensure cache line versions don’t overflow,
measure read time and discard it too long

tupdate_min= 40 ns
t =40 ns*21%* (1-¢) =2 ms

23

read _max

Paper

- Programming model

- Transactions and lock-free operations
- Hashtable ¢

FaRM hashtable
- Important building block

- FaRM makes it possible to easily
try out different designs
- Optimized for lookups

- One RDMA in the common case

RDMA

- Good space utilization

25

-e-FaRM - TCP

200

o - -
5 O 5
1

—
s / sdnyoo07

3 12 16 20

2345

Servers

26

Latency us (log)

-o-FaRM < TCP

OO Oneveenamessanees Creeerreennnnnnennnnnnns Oevmvvrrnnnnnnnnnnnannns PO TITTITTTTTTTTTRRrrrrees S
o
M —(= —@- PY P
2 345 8 12 16 20
Servers

27

TAO [Bronson 13, Armstrong "13]

- Facebook’s in-memory graph store

- Workload
. Read-dominated (99.8%) 6 Mops/s/srv
+ 10 operation types (10x improvement)
- FaRM implementation
- Nodes and edges are FaRM objects 42 us dvVerage |atency
- Lock-free reads for lookups (40 — 50x iImprovement)

- Transactions for updates

28

FaRM

- Platform for distributed computing

- Data is In memory
- RDMA

- Shared memory abstraction

- Transactions
- Lock-free reads

- Order-o-magnitude performance improvements

- Enables new applications

29

