

I Know What Your Packet Did Last Hop: Using Packet Histories to Troubleshoot Networks

Nikhil Handigol

With

Brandon Heller, Vimal Jeyakumar, David Mazières, Nick McKeown
NSDI 2014, Seattle, WA
April 2, 2014

Bug Story: Incomplete Handover

Network Outages

make news headlines

Jul 27, 2012 - 2:32P

Micro

On April 26, 2010, NetSuite suffered a service outage that rendered its cloud-based applications inaccessible to customers worldwide for **30 minutes**... NetSuite blamed a **network issue** for the downtime.

Hosting.com's New Jersey data center was taken down on June 1, 2010, igniting a cloud outage and connectivity loss for nearly two **hours**... Hosting.com said the connectivity loss was due to a software bug in a Cisco switch that caused the switch to fail.

vitter

enty of con

ains. It pou

s and we The Planet was rocked by a pair of network outages that knocked it **off** line for about 90 minutes on May 2, 2010. The outages caused disruptions for another 90 minutes the following morning.... Investigation found that the outage was caused by a fault in a **router** in one of the company's data centers.

Troubleshooting Networks is Hard Today

- Tedious and ad hoc
- Requires skill and experience
- Not guaranteed to provide helpful answers

We want complete network visibility

Talk Outline

- 1. How to achieve complete network visibility
 - An abstraction: Packet History
 - A platform: NetSight

- 2. Why achieving complete visibility is feasible
 - Data compression
 - MapReduce-style scale-out design

Packet History

- Packet history = Path taken by a packet
 - + Header modifications
 - + Switch state encountered

Our Troubleshooting Workflow

- 1. Record and store all packet histories
- 2. Query and use packet histories of errant packets

NetSight

A platform to capture and filter packet histories of interest

Reconstructing Packet Histories

Step 2: Group postcards by generating packet

Reconstructing Packet Histories

Step 3: Sort postcards using topology

Packet History Filter: A regular-expression-like language to specify packet histories of interest

Bug Story: Incomplete Handover

Packet History Filter

"Pkts from server not reaching the client"

Packet History

Switch X:

inport: p0, outports: [p1] mods: [...] state version: 3

Switch Y:

inport p1, outports: [p3] mods: ...

18

Troubleshooting Apps

ndb:

Interactive network debugger

nprof:

Hierarchical network profiler

netwatch:

Live network invariant monitor

netshark:

Network-wide wireshark

But will it scale?

Why generating postcards for every packet at every hop is crazy!

Network Overhead

- 64 byte-postcard/pkt/hop
- Stanford Network: 5 hops avg, 1031 byte avg pkt
- 31% extra traffic!

Processing Overhead

Packet history assembly and filtering

Storage Overhead

Why generating postcards for every packet at every hop is not crazy!

Cost is OK for low-utilization networks

- E.g., test networks, "bring-up phase" networks
- Single server can handle entire Stanford traffic

Why generating postcards for every packet at every hop is not crazy!

Huge redundancy in packet header fields

- Only a few fields change IP ID, TCP seq. no.
- Postcards can be compressed to 10-20 bytes/pkt

Why generating postcards for every packet at every hop is not crazy!

Postcard processing is embarrassingly parallel

 Each packet history can be processed independent of other packet histories

NetSight Variants

NetSight-SwitchAssist moves postcard compression to switches

Move postcard compression to switches with simple hardware mechanisms

NetSight-HostAssist exploits visibility from the hypervisor

Overhead Reduction in NetSight

Basic (naïve) NetSight: 31% extra traffic in Stanford backbone network

NetSight Switch-Assist: 7%

NetSight Host-Assist: 3%

Takeaways

Complete network visibility is possible

- Packet History: a powerful troubleshooting abstraction that gives complete visibility
- NetSight: a platform to capture and filter packet histories of interest

Complete network visibility is feasible

 It is possible to collect and filter packet histories at scale

Every I Know What Your Packet Did Last Hop: Using Packet Histories to Troubleshoot Networks

Nikhil Handigol † , Brandon Heller † , Vimalkumar Jeyakumar † , David Mazières, Nick McKeown ${nikhilh, brandonh}@cs.stanford.edu, {jvimal, nickm}@stanford.edu, http://www.scs.stanford.edu/~dm/addr/$

NetSight API

Abstract

The complexity of networks has outpaced our tools to debug them; today, administrators use manual tools to diagnose problems. In this paper, we show how *packet histories*—the full stories of every

1. "Host A cannot talk to packets from A intended with any header modified."

2. "I don't want forward even transient ones. Slavet that passes the same switch

http://yuba.stanford.edu/netsight