
Ariel Rabkin 
Princeton University 

asrabkin@cs.princeton.edu 

Aggregation and Degradation in JetStream: 
Streaming Analytics in the Wide Area 

Work done with Matvey Arye, Siddhartha Sen, 
Vivek S. Pai, and Michael J. Freedman 

 



Today’s Analytics Architectures 
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� Backhaul is inefficient and inflexible 

MillWheel  
(Google) Storm 



Tomorrow’s Architecture: JetStream 
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� Backhaul is inefficient and inflexible 
� Goal: optimize use of WAN links by 

exposing them to streaming system. 

JetStream 



Backhaul is Intrinsically Inefficient 
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Buyer’s remorse: 
wasted bandwidth 
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system overload or 
missing data 

Needed for backhaul 



Stream Processing Basics 
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Filtering (count > 100) 
Sampling (drop 90% of data) 
Image Compression 
 

Quantiles (95th percentile) 
Query stored data 

Site A 

Some Operators in JetStream: 
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The JetStream System 

What:  Streaming with aggregation and 
degradation as first-class primitives 

Where:  Storage and processing at edge 

Why:  Maximize goodput using aggregation 
and degradation 

How: Data cubes and feedback control 
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An Example Query 
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How popular is  
every URL? 

Requests Requests 
CDN 

Requests 

Requests Requests 
CDN 

Requests 



Mechanism 1: Storage with Aggregation  
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Requests Requests 
CDN 

Requests 

Requests Requests 
CDN 

Requests 
Every minute, 
compute request 
counts by URL 

Local 
Aggregation 
and Storage 

Local 
Aggregation 
and Storage 



Mechanism 2: Adaptive Degradation 
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Requirements for Storage Abstraction 
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�  Update-able (locally and incrementally) 

Data Data Merged 
Representation 

+ = 

Data Data 

�  Merge-able (without accuracy penalty) 

�  Data size is reducible (with predictable accuracy cost) 

Stored Data += Data 



The Data Cube Model 

Aggregation used for: 
� Updates 
� Roll-ups 
� Merging cubes 
� Summarizing cubes 
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Counts by URL 12:00 12:01 12:02 

www.mysite.com/a 3 5 0 

www.mysite.com/b 0 2 0 

www.yoursite.com 5 4 … 

www.her-site.com 8 12 … 

Cube:  A multidimensional array, indexed by a set of 
dimensions, whose cells hold aggregates. 

Cubes have aggregation function:  Agg(     , )à 



Cubes can be “Rolled Up” 
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Counts by URL 12:00 12:01 12:02 

www.mysite.com/a 3 5 0 

www.mysite.com/b 0 2 0 

www.yoursite.com 5 4 … 

www.her-site.com 8 12 … 

Cube:  A multidimensional array, indexed by a set of 
dimensions, whose cells hold aggregates. 

Counts by URL * 

www.mysite.com/a 8 

www.mysite.com/b 2 

www.yoursite.com 9 

www.her-site.com 20 

Counts by URL 12:00 12:01 12:02 
* 16 23 … 



Cubes Unify Storage and Aggregation 
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Stored Data Update 

Update 

Update 

Update sent 
downstream 

Standing 
Query 

One-off 
query 



Feedback control 

Degradation: The Big Picture 
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Local Data 
Dataflow 

Operators 
Summarized or 
Approximated 

Data 

�  Level of degradation auto-tuned to match bandwidth. 
�  Challenge: Supporting mergeability and flexible policies 

Network Dataflow 
Operators 



Mergeability Imposes Constraints 

�  Insight: Degradation may be discontinuous 

01 - 10 11 - 20 Every 10 21 - 30 

01 - 30 Every 30?? 

01 - 05 06 - 10 11 - 15 16 - 20 21 - 25 Every 5 26 - 30 

01 - 06 07 - 12 13 - 18 19 - 24 Every 6 25 - 30 
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?????? 

02 - 06 07 - 11 12 - 16 17 - 21 22 - 26 Every 5 27 - 31 



There Are Many Ways to Degrade Data 
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�  Can coarsen a dimension 

�  Can drop low-rank values 
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Coarsening Does Not Always Help 
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Degradations Have Trade-offs 
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Name Fixed BW 
Savings 

Fixed Accuracy 
cost 

Parameter 

Dim. Coarsening Usually no Yes Dimension 
Scale 

Drop values 
(locally) 

Yes No Cut-off 

Drop values 
(globally) 

No, multi-round 
protocol 

Yes Cut-off 

Audiovisual 
downsampling 

Yes Yes Sample rate 

Histogram 
Coarsening 

Yes 
 

Yes 
 

Number of 
Buckets 



A Simple Idea that Does Not Work 

�  We have sensors that report congestion…. 
�  Have operators read sensor and adjust themselves? 
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Coarsening 
Operator 

Incoming 
data Network Sampled 

Data 

Sending 4x too much 



A Simple Idea that Does Not Work 

�  We have sensors that report congestion…. 
�  Have operators read sensor and adjust themselves? 
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Coarsening 
Operator 

Incoming 
data Network Sampled 

Data 

Sending 4x too much 

Increase aggregation 
period up to 10 sec. If 

insufficient, use sampling 



Challenge: Composite Policies 

�  Chaos if two operators are simultaneously 
responding to the same sensor 

21 

Coarsening 
Operator 

Incoming 
data Network 

Sampling 
Operator 

Sending 4x too much 



Interfacing with Operators 
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Shrinking data by 50% 
Possible levels: 

 [0%,  50%, 75%, 95%, …] 

Go to level 75% 

Coarsening 
Operator 

Incoming 
data Network 

Sampling 
Operator 

Controller 

Sending 4x too much 



Experimental Setup 
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80 nodes on VICCI testbed at three sites 
(Seattle, Atlanta, and Germany) 

Policy: Drop data if insufficient BW 

Princeton 
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Drop 
BW 
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Degradation Keeps Latency Bounded 
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Bandwidth Shaping 
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Median Latency 

95th percentile latency 

Maximum Latency 



Programming Ease 
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Scenario Lines of code 
Slow requests 5 
Requests by URL 5 

Bandwidth by node 15 
Bad referrers 16 
Latency and size quantiles 25 
Success by domain 30 
Top 10 domains by period 40 

Big Requests 97 



Conclusions and Future Work 

�  Useful to embed aggregation and degradation 
abstractions in streaming systems. 

�  Aggregation can be unified with storage. 

�  System must accommodate degradation semantics. 

�  Open questions:  
� How to guide users to the right degradation policy?  
� How to embed abstractions in higher-level language? 
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