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Common Focus: Reduce Page Load Times
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Our Approach: 
Dynamic Reprioritization 

● Forseeable Future: High load times norm, not exception

● Reformulate the problem:

How to reduce page load time?

How to Prioritize the content most important to user?

○ Typical tolerance limit of 2-4 seconds

○ Deliver “high utility” resources within time budget 

● Our solution: Klotski proxy

○ No modifications to clients and web servers!



Klotski in Action!
Original Page Load at 3s Klotski Page Load at 3s
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Challenges with Idealized View

Klotski
Proxy

High Priority Resource

Low Priority Resource

Web Server

C1: Dynamic content + dependencies
C2: Fast selection of subset to prioritize
C3: How long will a subset take?

time budget



Image

Challenge 1:
Dynamic Content and Dependencies 
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Intuition: Page structure is stable

Dependency DAG

HTML

CSS IMAGE 1SCRIPT

IMAGE 2 IMAGE 3

● Prior work on static dependencies
○ E.g., WebProphet, WProf

● Problem:  Dependencies not 
reusable due to dynamic content

● Our observation:
○ Nodes in DAG change
○ DAG structure largely stable

Load page repeatedly to generate fingerprint:
● DAG structure with a URL pattern at every node
● Pattern generalizes URL of dynamic resources
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Learn URL Patterns
● Generalize known prior URLs of a dynamic resource

● 3 Cases = 90% of Replacements:
○ Single token in URL changes
○ Only URL argument changes: www.site.org/a.js?FOO=1...
○ CDN node name: {CDN2.bar.com/x.jpg, CDN5.bar.com/x.jpg}

 foo.com/SG39HZ78/a.js
 foo.com/SHFS2732/a.js → foo.com/*/a.js



Identify Resource Replacements

● Capture set of prior URLs:
Track Replacement of Resource
over multiple page loads 



Identify Resource Replacements

R1 R2
● Capture set of prior URLs:

Track Replacement of Resource
over multiple page loads



Identify Resource Replacements

R1 R2

● Combination of techniques:
○ Match position in DAG 

dependency structure
○ Identical position on screen
○ Identical reference in source

● Capture set of prior URLs:
Track Replacement of Resource
over multiple page loads 



Challenge 2:
Optimal Prioritization Schedule
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Select Subset of High Utility Resources

Dependency
structure in
fingerprint

DAG Cut

● Reduces to knapsack with dependencies: NP-Hard

● Apply greedy heuristic



Prioritizing High-Utility Resources

● Static URLs: Use SPDY PUSH to pre-emptively deliver 

as soon as main HTML is requested

● Dynamic URLs: Prioritize delivery if match with regular 

expression of a selected resource



Challenge 3:
Estimating Load Times in the “Wild”
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Web Server
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Seemingly Natural Non-Solutions

Klotski
Proxy

High Priority Resource

Low Priority Resource

Web Server

time budget

Model: bytes, #requests, ..?
Use Apriori Load Times?

Model: Too simplistic to capture browser effects
Apriori Loads: No longer valid with reprioritization
Cannot capture diversity in client conditions



Intuition Behind Klotski Estimator 

Bottleneck = Client-Proxy Link (e.g, 4G)

Klotski
Proxy

Web Server

time budget



Intuition Behind Klotski Estimator 

Klotski
Proxy

Web Server

time budget

Build Fluid Model Simulation
● Proxy as work conserving scheduler
● Priorities/Dependencies, fairly shared bw for concurrent transfers
● Some subtle issues: PUSH, client processing delays



Klotski: System Architecture

Clients

Klotski Service

Web Servers

Fingerprint 
Generator

Load Time 
Estimator

Resource 
Selection

BackEnd FrontEnd



Klotski: Experimental Results

Data Set

Websites
● 50 Random From Alexa Top 200

Mobile Device
● Android Smartphone
● 4G Connection
● Google Chrome

Paper Only Results
● Desktop PC + Ethernet
● Smartphone + Full Website
● User study on utility preferences
● Resource churn over time
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Klotski Improves User Experience
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Klotski Improves User Experience

2x Util
25% ➙ 60%
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High Utility Gain For Diverse Users



Conclusions
● Mobile web continues to be a pain point 

○ Focus on load time alone is likely insufficient

● Instead we focus on dynamic reprioritization 

● Key challenges we address:

○ dynamic dependency representation

○ fast resource selection

○ load time estimation

● Klotski greatly improves user experience

○ for diverse preferences


