
Klotski: Reprioritizing Web Content to
Improve User Experience on Mobile Devices

Michael Butkiewicz♔, Daimeng Wang♔,
Zhe Wu♖, Harsha V. Madhyastha♖, Vyas Sekar♘

♔ UC Riverside ♖ University of Michigan ♘ CMU

Motivation: Slow Mobile Web

Motivation: Slow Mobile Web

0.5

2.5
sec

7.5
sec

12
sec

Motivation: Slow Mobile Web

Slow page loads → Less users, Lost business

0.5

2.5
sec

7.5
sec

12
sec

Wide Range of Existing Solutions

Wide Range of Existing Solutions

Compression

Caching

Mobile format
web pages

Wide Range of Existing Solutions

Compression

SPDY Caching

Mobile format
web pages

Wide Range of Existing Solutions

Compression

SPDY Caching

Faster
Networks Better web

browsers

Mobile format
web pages

Wide Range of Existing Solutions

Compression

SPDY Caching

Faster
Networks Better web

browsers

Common Focus: Reduce Page Load Times

Reducing Load Time is Not Enough

Rising Website Complexity

Rising Website Complexity Falling User Tolerance

Reducing Load Time is Not Enough

Our Approach:
Dynamic Reprioritization

● Forseeable Future: High load times norm, not exception

Our Approach:
Dynamic Reprioritization

● Forseeable Future: High load times norm, not exception

● Reformulate the problem:

Our Approach:
Dynamic Reprioritization

● Forseeable Future: High load times norm, not exception

● Reformulate the problem:

How to reduce page load time?

Our Approach:
Dynamic Reprioritization

● Forseeable Future: High load times norm, not exception

● Reformulate the problem:

How to reduce page load time?

How to Prioritize the content most important to user?

Our Approach:
Dynamic Reprioritization

● Forseeable Future: High load times norm, not exception

● Reformulate the problem:

How to reduce page load time?

How to Prioritize the content most important to user?

○ Typical tolerance limit of 2-4 seconds

○ Deliver “high utility” resources within time budget

Our Approach:
Dynamic Reprioritization

● Forseeable Future: High load times norm, not exception

● Reformulate the problem:

How to reduce page load time?

How to Prioritize the content most important to user?

○ Typical tolerance limit of 2-4 seconds

○ Deliver “high utility” resources within time budget

● Our solution: Klotski proxy

○ No modifications to clients and web servers!

Klotski in Action!
Original Page Load at 3s Klotski Page Load at 3s

Klotski: Idealized View

Klotski
Proxy

Web Server

Webpage Resource

Klotski: Idealized View

Klotski
Proxy

Web Server

Webpage Resource

Klotski: Idealized View

Klotski
Proxy

High Priority Resource

Low Priority Resource

Web Server

Klotski: Idealized View

Klotski
Proxy

High Priority Resource

Low Priority Resource

Web Server

time budget

Challenges with Idealized View

Klotski
Proxy

High Priority Resource

Low Priority Resource

Web Server

time budget

C1: Dynamic content + dependencies

Challenges with Idealized View

Klotski
Proxy

High Priority Resource

Low Priority Resource

Web Server

C1: Dynamic content + dependencies
C2: Fast selection of subset to prioritize

time budget

Challenges with Idealized View

Klotski
Proxy

High Priority Resource

Low Priority Resource

Web Server

C1: Dynamic content + dependencies
C2: Fast selection of subset to prioritize
C3: How long will a subset take?

time budget

Image

Challenge 1:
Dynamic Content and Dependencies

Klotski
Proxy

Robust Dependency Knowledge

High Priority Resource

Low Priority Resource

Web Server

A
Javascript

A
requires

A

time budget

Dependency DAG

HTML

CSS IMAGE 1SCRIPT

IMAGE 2 IMAGE 3

Intuition: Page structure is stable
● Prior work on static dependencies

○ E.g., WebProphet, WProf

Dependency DAG

HTML

CSS IMAGE 1SCRIPT

IMAGE 2 IMAGE 3

● Prior work on static dependencies
○ E.g., WebProphet, WProf

● Problem: Dependencies not
reusable due to dynamic content

Intuition: Page structure is stable

Dependency DAG

HTML

CSS IMAGE 1SCRIPT

IMAGE 2 IMAGE 3

● Prior work on static dependencies
○ E.g., WebProphet, WProf

● Problem: Dependencies not
reusable due to dynamic content

● Our observation:
○ Nodes in DAG change
○ DAG structure largely stable

Intuition: Page structure is stable

Intuition: Page structure is stable

Dependency DAG

HTML

CSS IMAGE 1SCRIPT

IMAGE 2 IMAGE 3

● Prior work on static dependencies
○ E.g., WebProphet, WProf

● Problem: Dependencies not
reusable due to dynamic content

● Our observation:
○ Nodes in DAG change
○ DAG structure largely stable

Load page repeatedly to generate fingerprint:
● DAG structure with a URL pattern at every node
● Pattern generalizes URL of dynamic resources

Learn URL Patterns
● Generalize known prior URLs of a dynamic resource

 foo.com/SG39HZ78/a.js
 foo.com/SHFS2732/a.js → foo.com/*/a.js

Learn URL Patterns
● Generalize known prior URLs of a dynamic resource

● 3 Cases = 90% of Replacements:
○ Single token in URL changes
○ Only URL argument changes: www.site.org/a.js?FOO=1...
○ CDN node name: {CDN2.bar.com/x.jpg, CDN5.bar.com/x.jpg}

 foo.com/SG39HZ78/a.js
 foo.com/SHFS2732/a.js → foo.com/*/a.js

Identify Resource Replacements

● Capture set of prior URLs:
Track Replacement of Resource
over multiple page loads

Identify Resource Replacements

R1 R2
● Capture set of prior URLs:

Track Replacement of Resource
over multiple page loads

Identify Resource Replacements

R1 R2

● Combination of techniques:
○ Match position in DAG

dependency structure
○ Identical position on screen
○ Identical reference in source

● Capture set of prior URLs:
Track Replacement of Resource
over multiple page loads

Challenge 2:
Optimal Prioritization Schedule

Klotski
Proxy

Which subset
to prioritize
and how?

High Priority Resource

Low Priority Resource

Web Server

time budget

Select Subset of High Utility Resources

Dependency
structure in
fingerprint

Select Subset of High Utility Resources

Dependency
structure in
fingerprint

Select Subset of High Utility Resources

Dependency
structure in
fingerprint

DAG Cut

● Reduces to knapsack with dependencies: NP-Hard

● Apply greedy heuristic

Prioritizing High-Utility Resources

● Static URLs: Use SPDY PUSH to pre-emptively deliver

as soon as main HTML is requested

● Dynamic URLs: Prioritize delivery if match with regular

expression of a selected resource

Challenge 3:
Estimating Load Times in the “Wild”

Klotski
Proxy

Will subset load
within budget?

High Priority Resource

Low Priority Resource

Web Server

time budget

X

Seemingly Natural Non-Solutions

Klotski
Proxy

High Priority Resource

Low Priority Resource

Web Server

time budget

Model: bytes, #requests, ..?
Use Apriori Load Times?

Model: Too simplistic to capture browser effects
Apriori Loads: No longer valid with reprioritization
Cannot capture diversity in client conditions

Intuition Behind Klotski Estimator

Bottleneck = Client-Proxy Link (e.g, 4G)

Klotski
Proxy

Web Server

time budget

Intuition Behind Klotski Estimator

Klotski
Proxy

Web Server

time budget

Build Fluid Model Simulation
● Proxy as work conserving scheduler
● Priorities/Dependencies, fairly shared bw for concurrent transfers
● Some subtle issues: PUSH, client processing delays

Klotski: System Architecture

Clients

Klotski Service

Web Servers

Fingerprint
Generator

Load Time
Estimator

Resource
Selection

BackEnd FrontEnd

Klotski: Experimental Results

Data Set

Websites
● 50 Random From Alexa Top 200

Mobile Device
● Android Smartphone
● 4G Connection
● Google Chrome

Paper Only Results
● Desktop PC + Ethernet
● Smartphone + Full Website
● User study on utility preferences
● Resource churn over time

Klotski Improves User Experience

Klotski Improves User Experience

Within the first
X seconds

Klotski Improves User Experience

% of site's high util
resources loaded

Within the first
X seconds

Klotski Improves User Experience

50 Websites

Klotski Improves User Experience

75%

25%

50 Websites

50%

Klotski Improves User Experience

Median site
25% ATF
in 2 secs

0.25

Klotski Improves User Experience

Klotski Improves User Experience

35%
utility
gain

Klotski Improves User Experience

2x Util
25% ➙ 60%

High Utility Gain For Diverse Users

High Utility Gain For Diverse Users

User
Preferences

High Utility Gain For Diverse Users

User
Preferences

Utility Gained
at 2 Seconds

High Utility Gain For Diverse Users

Conclusions
● Mobile web continues to be a pain point

○ Focus on load time alone is likely insufficient

● Instead we focus on dynamic reprioritization

● Key challenges we address:

○ dynamic dependency representation

○ fast resource selection

○ load time estimation

● Klotski greatly improves user experience

○ for diverse preferences

