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“It would be nice if we could figure out
which link was causing these retransmits.”

- Ranjeeth Dasineni, Facebook (paraphrased)



Contemporary datacenter network
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However: faults may be partial/intermittent.




Partial faults: A few examples

* Netpilot (Sigcomm 2011): Frame check error, unequal ECMP hashing, etc.

Wu, Xin, et al. "Netpilot: automating datacenter network failure mitigation." ACM SIGCOMM Computer
Communication Review 42.4 (2012): 419-430.

* Everflow (Sigcomm 2015): TCAM bit errors, silent packet drops.
Zhu, Yibo, et al. "Packet-Level Telemetry in Large Datacenter Networks.” SIGCOMM, 2015.

* Pingmesh (Sigcomm 2015): “fiber FCS...errors, switching ASIC defects, switch
fabric flaw, switch software bug, NIC configuration issue, network congestions,
etc. We have seen all these types of issues in our production networks.”

Guo, Chuanxiong, et al. "Pingmesh: A Large-Scale System for Data Center Network Latency Measurement and
Analysis.” SIGCOMM, 2015.



Vast body of prior work (just a small sample...)

Application instrumentation: various production systems

Active probing: Pingmesh (SIGCOMM’15), NetNorad (Facebook),
ATPG (CoNEXT ‘12), Everflow (SIGCOMM‘15)

Machine learning: NetPoirot (SIGCOMM’16)
Graph algorithms: Gestalt (Usenix ATC ‘14), SCORE (NSDI ‘05)

Path tracing: Everflow (SIGCOMM‘15), NetNorad (Facebook), NetSight (NSDI ‘14),
Tiny Packet Programs (SIGCOMM‘14)

Network instrumentation: FlowRadar (NSDI ’16), Planck (SIGCOMM‘14),
NetPilot (SIGCOMM‘11)



We exploit: highly regular load balanced traffic
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Load balanced traffic simplifies fault handling

* Evenly loaded paths means per path performance is similar if no errors.
* Network faults lead to outlier paths.
* If flow network path known, can correlate flow performance with path.

* Approach allows us to find and localize faults:
* In an application agnostic manner
* Incurring no additional probing overhead
* More rapidly than prior published works



Facebook datacenter topology

Spi

Alexey Andreyev.

Introducing data center fabric, the next-generation Facebook data center network.

https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-

next-generation-facebook-data-center-network/ g



Finding path information at Facebook
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Finding path information at Facebook
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Finding path information at Facebook

Core

4 *
Source ‘ ‘ Destination

Solution: aggregation switch marks packets
based on core downlink traversed.
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How do we use path information?

* In principle: can compare flow performance by path.

Equivalence sets:
1. Reduces number of comparisons needed.

2. Pinpoints fault to specific location.

* Solution: Just compare links!

acks.

18



Equivalence sets in Facebook topology
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Equivalence sets in Facebook topology
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Outlier analysis with application agnostic metrics

Hosts already track metrics for congestion control or performance monitoring:

TCP Congestion window: Affected by packet loss.
TCP Retransmits: Affected by packet loss.

With equivalence set based grouping,

we can compare distributions by link.
Only link faults cause variance between links.

Caveat: Can be difficult to determine if an affect is due to a faulty link,
overloaded hosts, application variance, etc.
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Demonstrating equivalence sets from Agg to ToR

(3a) We simulate

error on this link: \

ToR

(2) Host aggregates (1) ToR marks
TCP metrics by link packet DSCP
(3b) Host drops per inbound link
0.5% of packets
traversing link
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TCP Congestion window in Agg to ToR equivalence set
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Congestion window
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Congestion window signal is application agnostic
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Retransmits
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We use: TCP retransmits
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Detecting faults in production

* Monitored traffic through pod aggregation switch.
1. No faults injected.
2. Collected TCP metric data on 30 web server hosts.

3. Equivalence set: four linecards connecting to core layer
(each linecard has equal share of uplinks).

* On January 25%, a single linecard had a software fault.
1. Linecard controller software hung.
2. BGP routes timed out, production traffic through linecard routed away.
3. Afew minutes later, NetNORAD flagged unresponsive linecard.



Fault visible to our approach in 30 seconds
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Classifying faulty links

* “Does this link have more retransmits per flow than the other links?”

* “Do two distributions have the same mean, or is one greater?”

Classifier: compare each link to other links

with one sample Student’s T-Test.
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Online fault monitoring with T-Test alone

* In principle: can setup a system that uses end host T-Test result
to tell us which network links are faulty.

* However: by itself this is susceptible to False Positives.

e Can’t afford false positives in network with O(10,000) links!



Accounting for false positives

e However, two characteristics aid us:

Chi-squared test: determines if any links are outliers.

“Yes, all the links being marked faulty by hosts at similar rates.”

“No, a subset has a comparatively high percentage of hosts claiming fault.”

2. “Are hosts flagging a particular subset of links as faulty at higher rates?”
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Evaluation in the datacenter

* Small detection surface; did not detect any ‘organic’ partial faults.
e Approach: inject ‘simulated’ faults to evaluate approach.

* Induced a variety of fault scenarios to challenge our system.



Evaluation in the datacenter: fault scenarios

* Miniscule faults: faults can have very low drop rates.
e Concurrent faults: multiple faults can occur simultaneously.
* Masked faults: larger fault can mask effect of miniscule fault.

* Correlated faults: hardware fault can impact multiple nearby links,
confounding outlier analysis.
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Finding miniscule faults: experiment setup

Core
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Finding miniscule faults: experiment setup

Core
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Finding miniscule faults: experiment setup

S
Agg - Core

Equivalence set:
N uplinks from
pod Agg layer
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36



Finding miniscule faults: experiment setup

S
Agg - Core

Partial fault
induced on single
Core to Agg
downlink.
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Fault detection rate (%)

Fault detection rate vs drop rate
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Miniscule faults: choosing between
detection speed and sensitivity
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Miniscule faults: choosing between
detection speed and sensitivity
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Miniscule faults: choosing between
detection speed and sensitivity
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Miniscule faults: choosing between
detection speed and sensitivity
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Miniscule faults: choosing between
detection speed and sen5|t|V|ty
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Miniscule faults: choosing between
detection speed and sen5|t|V|ty
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Ranjeeth Dasine... + B L [ X

conversation about how it would

‘" be nice to know specifically
I t WO u I d t which link that retransmits were
1 . occurring because of
it we could f R rer s
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Ranjeeth Dasinen
(paraphras ﬂ Nice job .. too you long enough

v
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center for networked systems
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Interpreting the T-Test

1. T-Statistic: “Does this link have more or less retransmits than average?”

* Positive T-statistic means larger than average.
T-statistic means smaller than average.

2. P-Value: “Is the difference in mean big enough to concern us?”

* Close to 0 means this link could be an outlier.
means we are not concerned.
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