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Contributions

(1) Size-aware sharding
Improve tail latencies of in-memory key-value stores
with heterogeneous item sizes

(2) Minos in-memory key-value store
Order-of-magnitude lower 99t percentile latency



BACKGROUND



Tail latencies in high fan-out applications

Slowest reply determines request latency

SLO: N-th percentile of resp. time < X




In-memory key-value stores (KV)

* Widespread solution to deliver low latency

* Caches / non-persistent data repositories



State-of-the-art KVs: design

High-bandwidth, multi-queue NICs Run-to-completion model
+ +

Kernel-bypassing network stacks Ad hoc data structures and CC




State-of-the-art KVs: performance

usec-scale latencies @ several Mops/sec



State-of-the-art KVs: performance

usec-scale latencies @ several Mops/sec

But high tail latencies with heterogeneous item sizes




Heterogeneous item sizes are common

Facebook [SIGMETRICS12]
Wikipedia [ISCA13]
Flickr [ISCA13]
Memcachier [NSDI19]
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Heavy tail: few large requests but very costly



Why high tail latencies?

1. Head-of-line blocking

2. Convoy effect



Head-of-line blocking

Small requests enqueued behind a large

11



Convoy effect

Burst of large requests may take most (or all) cores
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SIZE-AWARE SHARDING



Size-aware sharding

1. Small and large requests on disjoint sets of cores
=>» Avoid head-of-line blocking

2. Reserve some cores for small requests
=>» Avoid convoy effect



Size-aware sharding in operation
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Size-aware sharding in operation
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Trade-off: large requests take longer

>
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Trade-off: large requests take longer




Trade-off: large requests take longer

WITHOUT
size-aware sharding —




MINOS IN-MEMORY KV



Implementation

*Single-node, PUT-GET
* Commodity hardware

* No data durability



Minos design challenges

@ Small vs large threshold

»
»

Core partitioning

Request dispatch
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Minos design challenges

@ Small vs large threshold

@ Core partitioning
@ Request dispatch
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Main insight

Improve N-th percentile of latencies

¥

Improve latencies of N% smallest requests
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Example with 99" percentile

Obtain at runtime the CDF of the sizes of accessed items
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Example with 99" percentile

Obtain at runtime the CDF of the sizes of accessed items
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Minos design challenges

0 Small vs large threshold
@ Core partitioning
@ Request dispatch
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Goal

Avoid
overloading
large cores

Improve small
requests



Load-proportional core allocation

K% of the load for small requests

¥

K% of small cores
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Measuring the load of a request

Load of a request = # processed network packets



Dynamic core allocation

1. Obtain at runtime the load of requests of different sizes
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Dynamic core allocation

2. Fraction of small request load = ] / + )

Small size threshold

LOAD

1 100 10000 1000000
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Dynamic core allocation

3. # Small cores = ceiling ( small load * # total cores)

Small size threshold

LOAD

)
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Minos design challenges

o Small vs large threshold
0 Core partitioning
@ Request dispatch
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Request size unknown a priori

RX queues

— SMALL

| m ~ LARGE

’i@’ Reduce software dispatch
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Only small cores read from the NIC

1. From its own RX queue

2. From large cores’ RX queues



Operation of small cores on a request
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Operation of small cores on a request

Obtain size — GET: do lookup
. PUT: in header
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Operation of small cores on a request
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Operation of small cores on a request

 malii

Process request
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Operation of small cores on a request
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Operation of small cores on a request

——

Process request To large core

SOFTWARE DISPATCH ONLY FOR FEW LARGEg



EVALUATION



Test-bed

e Server: 8 cores, 40Gbps NIC, DPDK stack

 Wkld ~ ETC Facebook [SIGMETRICS12]
*<1% large requests [1.5, 500] KB

*95:5 GET:PUT ratio

» Skewed accesses (zipf 0.99)



Competitors

1. Early binding (~ MICA [NSDI14])
2. Early binding + stealing (~ ZygOS [SOSP17])

3. Late binding (“RAMCloud [TOCS15])



Early binding (MICA, NSDI2014)

Request -> core based on key-hash of target item
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Early binding (MICA, NSDI2014)

Request -> core based on key-hash of target item
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Early binding + stealing (ZygOS SOSP17)

Idle cores steal requests from other queues/buffers

RX Buffer
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Late binding (RAMCloud TOCS15)

GET(k) ﬁ

One core receives all requests
dispatches them to idle cores

//

RX

Buffer
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Throughput vs overall 99t latency
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Minos vs early binding
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Lower latency
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Why? No head-of-line blocking
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Same maximum throughput
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Why? Low dispatch overhead
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Minos vs stealing

Minos =+ Early ® Stealing %

2400

o
<§‘1OO - -

2 3 4
Throughput (Mops/s

)5

63



Lower latency
Minos =

2400

()]
<§‘1OO - -

Early ® Stealing %

)5

2 3 4
Throughput (Mops/s

64



Why? Higher load=> lower stealing
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Minos vs late binding
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Why? No convoy effect
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Higher throughput
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Why? No dispatch bottleneck
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Trade-off: 99t [atency of large operations
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Other results in the paper

* More item size distributions
* Dynamic workload
* Write intensive workload

* Scalability



Conclusion: size-aware sharding

(¢ Improve tail latency in in-memory key-value stores
- Serve small and large requests on different cores

* Minos in-memory KV: 10x lower 99t percentile latency
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