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Contributions

(1) Size-aware sharding
Improve tail latencies of in-memory key-value stores 

with heterogeneous item sizes

(2) Minos in-memory key-value store
Order-of-magnitude lower 99th  percentile latency
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BACKGROUND
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Tail latencies in high fan-out applications

Slowest reply determines request latency
SLO: N-th percentile of resp. time < X
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In-memory key-value stores (KV)

•Widespread solution to deliver low latency

•Caches  / non-persistent data repositories
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State-of-the-art KVs: design

High-bandwidth, multi-queue NICs
+

Kernel-bypassing network stacks

Run-to-completion model
+

Ad hoc data structures and CC
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State-of-the-art KVs: performance

μsec-scale  latencies @ several Mops/sec
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State-of-the-art KVs: performance

μsec-scale  latencies @ several Mops/sec

But high tail latencies with heterogeneous item sizes
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Facebook [SIGMETRICS12]
Wikipedia [ISCA13]

Flickr [ISCA13]
Memcachier [NSDI19]

Heterogeneous item sizes are common
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Facebook [SIGMETRICS12]
Wikipedia [ISCA13]

Flickr [ISCA13]
Memcachier [NSDI19]

Heavy tail: few large requests but very costly 

Heterogeneous item sizes are common
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Why high tail latencies?

1. Head-of-line blocking

2. Convoy effect
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Head-of-line blocking

Small requests enqueued behind a large
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Convoy effect

Burst of large requests may take most (or all) cores
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SIZE-AWARE SHARDING
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Size-aware sharding

1. Small and large requests on disjoint sets of cores
èAvoid head-of-line blocking

2. Reserve some cores for small requests
èAvoid convoy effect
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Size-aware sharding in operation

Small cores

Large cores
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Size-aware sharding in operation

Small cores

Large cores
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Size-aware sharding in operation
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Size-aware sharding in operation

Small cores

Large cores

20



Size-aware sharding in operation

Small cores

Large cores
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Trade-off: large requests take longer
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Trade-off: large requests take longer
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Trade-off: large requests take longer
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WITHOUT
size-aware sharding



MINOS IN-MEMORY KV
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Implementation

• Single-node, PUT-GET

•Commodity hardware

•No data durability
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Small vs large threshold

Core partitioning

Request dispatch

Minos design challenges

27



Small vs large threshold

Core partitioning

Request dispatch

Minos design challenges
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Main insight

Improve N-th percentile of latencies

Improve latencies of N% smallest requests
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Example with 99th percentile

Obtain at runtime the CDF of the sizes of accessed items
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Example with 99th percentile

Obtain at runtime the CDF of the sizes of accessed items

99%
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Example with 99th percentile

Obtain at runtime the CDF of the sizes of accessed items

99%

To large coresTo small cores 32



Small vs large threshold

Core partitioning

Request dispatch

Minos design challenges
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Improve small 
requests

Avoid 
overloading 
large cores

Goal

34



Load-proportional core allocation

K% of the load for small requests

K% of small cores
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Measuring the load of a request

Load of a request = # processed network packets
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Dynamic core allocation

1. Obtain at runtime the load of requests of different sizes
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Dynamic core allocation

2. Fraction of small request load =             / (        +       )

Small size threshold
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Dynamic core allocation

3. # Small cores =  ceiling ( small load  * # total cores )

Small size threshold
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Small vs large threshold

Core partitioning

Request dispatch

Minos design challenges
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SMALL

LARGE

RX queues

Request size unknown  a priori

Reduce software dispatch
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Only small cores read from the NIC

1. From its own RX queue

2. From large cores’ RX queues
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Operation of small cores on a request

Size < threshold?

Obtain size

Dispatch to large coreProcess request
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Operation of small cores on a request

Size < threshold?

Obtain size

Dispatch to large coreProcess request

GET: do lookup
PUT: in header
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Operation of small cores on a request

Small size?

Obtain size

Dispatch to large coreProcess request
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Operation of small cores on a request

Small size?

Obtain size

Dispatch to large core

Process request
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Operation of small cores on a request

Small size?

Obtain size

To large coreProcess request
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Operation of small cores on a request

Small size?

Obtain size

To large coreProcess request

SOFTWARE DISPATCH ONLY FOR FEW LARGE
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EVALUATION
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Test-bed

• Server: 8 cores, 40Gbps NIC, DPDK stack

•Wkld ~ ETC Facebook [SIGMETRICS12] 
• < 1 %  large requests [1.5, 500] KB

•95:5 GET:PUT ratio

• Skewed accesses (zipf 0.99)
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Competitors

1. Early binding (~ MICA [NSDI14])

2. Early binding + stealing (~ ZygOS [SOSP17])

3. Late binding  (~RAMCloud [TOCS15])
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Early binding (MICA, NSDI2014)

Request -> core based on key-hash of target item

RX Buffer

GET(k) 

Ha
sh

(k
)
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Early binding (MICA, NSDI2014)

Request -> core based on key-hash of target item

GET(k) 

Ha
sh

(k
)

RX Buffer
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Early binding (MICA, NSDI2014)

Request -> core based on key-hash of target item

GET(k) 

Ha
sh

(k
)

RX Buffer
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Early binding + stealing (ZygOS SOSP17)

Idle cores steal requests from other queues/buffers

GET(k) 

Ha
sh

(k
)

RX Buffer
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Late binding (RAMCloud TOCS15)

One core receives all requests
dispatches them to idle cores

GET(k) 

RX Buffer
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Throughput vs overall 99th latency

10

50

400

 100

 0  1  2  3  4  5  6  7

9
9

p
 (

µ
se

c,
 lo

g
)

Throughput (Mops/s)

Lo
w

er
 is

 b
et

te
r

More to the right is better
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Minos vs early binding
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Lower latency
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Why? No head-of-line blocking
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Same maximum throughput
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Why? Low dispatch overhead
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Minos vs stealing
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Lower latency
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Why? Higher loadà lower stealing
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Minos vs late binding
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Lower latency
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Why? No convoy effect
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Higher throughput
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Why? No dispatch bottleneck
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Trade-off: 99th latency of large operations
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Other results in the paper

•More item size distributions

•Dynamic workload

•Write intensive workload

• Scalability
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Conclusion: size-aware sharding

Improve tail latency  in in-memory key-value stores

• Serve small and large requests on different cores

•Minos in-memory KV: 10x lower 99th percentile latency
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THANK YOU

ANY QUESTIONS?
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