
Size-aware sharding for
improving tail latencies in

in-memory key-value stores

Diego Didona (EPFL), Willy Zwaenepoel (University of Sydney)

0

Contributions

(1) Size-aware sharding
Improve tail latencies of in-memory key-value stores

with heterogeneous item sizes

(2) Minos in-memory key-value store
Order-of-magnitude lower 99th percentile latency

1

BACKGROUND

2

Tail latencies in high fan-out applications

Slowest reply determines request latency
SLO: N-th percentile of resp. time < X

3

In-memory key-value stores (KV)

•Widespread solution to deliver low latency

•Caches / non-persistent data repositories

4

State-of-the-art KVs: design

High-bandwidth, multi-queue NICs
+

Kernel-bypassing network stacks

Run-to-completion model
+

Ad hoc data structures and CC

5

State-of-the-art KVs: performance

μsec-scale latencies @ several Mops/sec

6

State-of-the-art KVs: performance

μsec-scale latencies @ several Mops/sec

But high tail latencies with heterogeneous item sizes

7

Facebook [SIGMETRICS12]
Wikipedia [ISCA13]

Flickr [ISCA13]
Memcachier [NSDI19]

Heterogeneous item sizes are common

8

Facebook [SIGMETRICS12]
Wikipedia [ISCA13]

Flickr [ISCA13]
Memcachier [NSDI19]

Heavy tail: few large requests but very costly

Heterogeneous item sizes are common

9

Why high tail latencies?

1. Head-of-line blocking

2. Convoy effect

10

Head-of-line blocking

Small requests enqueued behind a large

11

Convoy effect

Burst of large requests may take most (or all) cores

12

SIZE-AWARE SHARDING

13

Size-aware sharding

1. Small and large requests on disjoint sets of cores
èAvoid head-of-line blocking

2. Reserve some cores for small requests
èAvoid convoy effect

14

Size-aware sharding in operation

Small cores

Large cores

15

Size-aware sharding in operation

Small cores

Large cores

16

Size-aware sharding in operation

Small cores

Large cores

17

Size-aware sharding in operation

Small cores

Large cores

18

Size-aware sharding in operation

Small cores

Large cores

19

Size-aware sharding in operation

Small cores

Large cores

20

Size-aware sharding in operation

Small cores

Large cores

21

Trade-off: large requests take longer

22

Trade-off: large requests take longer

23

Trade-off: large requests take longer

24

WITHOUT
size-aware sharding

MINOS IN-MEMORY KV

25

Implementation

• Single-node, PUT-GET

•Commodity hardware

•No data durability

26

Small vs large threshold

Core partitioning

Request dispatch

Minos design challenges

27

Small vs large threshold

Core partitioning

Request dispatch

Minos design challenges

28

Main insight

Improve N-th percentile of latencies

Improve latencies of N% smallest requests

29

Example with 99th percentile

Obtain at runtime the CDF of the sizes of accessed items

30

Example with 99th percentile

Obtain at runtime the CDF of the sizes of accessed items

99%

31

Example with 99th percentile

Obtain at runtime the CDF of the sizes of accessed items

99%

To large coresTo small cores 32

Small vs large threshold

Core partitioning

Request dispatch

Minos design challenges

33

Improve small
requests

Avoid
overloading
large cores

Goal

34

Load-proportional core allocation

K% of the load for small requests

K% of small cores

35

Measuring the load of a request

Load of a request = # processed network packets

36

Dynamic core allocation

1. Obtain at runtime the load of requests of different sizes

37

LO
AD

Dynamic core allocation

2. Fraction of small request load = / (+)

Small size threshold

38

LO
AD

Dynamic core allocation

3. # Small cores = ceiling (small load * # total cores)

Small size threshold

39

LO
AD

Small vs large threshold

Core partitioning

Request dispatch

Minos design challenges

40

SMALL

LARGE

RX queues

Request size unknown a priori

Reduce software dispatch

41

Only small cores read from the NIC

1. From its own RX queue

2. From large cores’ RX queues

42

Operation of small cores on a request

Size < threshold?

Obtain size

Dispatch to large coreProcess request

43

Operation of small cores on a request

Size < threshold?

Obtain size

Dispatch to large coreProcess request

GET: do lookup
PUT: in header

44

Operation of small cores on a request

Small size?

Obtain size

Dispatch to large coreProcess request

45

Operation of small cores on a request

Small size?

Obtain size

Dispatch to large core

Process request

46

Operation of small cores on a request

Small size?

Obtain size

To large coreProcess request

47

Operation of small cores on a request

Small size?

Obtain size

To large coreProcess request

SOFTWARE DISPATCH ONLY FOR FEW LARGE
48

EVALUATION

49

Test-bed

• Server: 8 cores, 40Gbps NIC, DPDK stack

•Wkld ~ ETC Facebook [SIGMETRICS12]
• < 1 % large requests [1.5, 500] KB

•95:5 GET:PUT ratio

• Skewed accesses (zipf 0.99)
50

Competitors

1. Early binding (~ MICA [NSDI14])

2. Early binding + stealing (~ ZygOS [SOSP17])

3. Late binding (~RAMCloud [TOCS15])

51

Early binding (MICA, NSDI2014)

Request -> core based on key-hash of target item

RX Buffer

GET(k)

Ha
sh

(k
)

52

Early binding (MICA, NSDI2014)

Request -> core based on key-hash of target item

GET(k)

Ha
sh

(k
)

RX Buffer

53

Early binding (MICA, NSDI2014)

Request -> core based on key-hash of target item

GET(k)

Ha
sh

(k
)

RX Buffer

54

Early binding + stealing (ZygOS SOSP17)

Idle cores steal requests from other queues/buffers

GET(k)

Ha
sh

(k
)

RX Buffer

55

Late binding (RAMCloud TOCS15)

One core receives all requests
dispatches them to idle cores

GET(k)

RX Buffer

56

Throughput vs overall 99th latency

10

50

400

 100

 0 1 2 3 4 5 6 7

9
9

p
 (

µ
se

c,
 lo

g
)

Throughput (Mops/s)

Lo
w

er
 is

 b
et

te
r

More to the right is better
57

Minos vs early binding

10

50

400

 100

 0 1 2 3 4 5 6 7

9
9

p
 (

µ
se

c,
 lo

g
)

Throughput (Mops/s)

Minos Early

58

Lower latency

10

50

400

 100

 0 1 2 3 4 5 6 7

9
9

p
 (

µ
se

c,
 lo

g
)

Throughput (Mops/s)

Minos Early

10X

59

Why? No head-of-line blocking

10

50

400

 100

 0 1 2 3 4 5 6 7

9
9

p
 (

µ
se

c,
 lo

g
)

Throughput (Mops/s)

Minos Early

10X

60

Same maximum throughput

10

50

400

 100

 0 1 2 3 4 5 6 7

9
9
p
 (

µ
se

c,
 lo

g
)

Throughput (Mops/s)

Minos Early

61

Why? Low dispatch overhead

10

50

400

 100

 0 1 2 3 4 5 6 7

9
9
p
 (

µ
se

c,
 lo

g
)

Throughput (Mops/s)

Minos Early

62

Minos vs stealing

10

50

400

 100

 0 1 2 3 4 5 6 7

9
9

p
 (

µ
se

c,
 lo

g
)

Throughput (Mops/s)

Minos Early Stealing

63

Lower latency

10

50

400

 100

 0 1 2 3 4 5 6 7

9
9

p
 (

µ
se

c,
 lo

g
)

Throughput (Mops/s)

Minos Early Stealing

10X

64

Why? Higher loadà lower stealing

10

50

400

 100

 0 1 2 3 4 5 6 7

9
9

p
 (

µ
se

c,
 lo

g
)

Throughput (Mops/s)

Minos Early Stealing

10X

65

Minos vs late binding

10

50

400

 100

 0 1 2 3 4 5 6 7

9
9
p
 (

µ
se

c,
 lo

g
)

Throughput (Mops/s)

Minos Early Stealing Late

66

Lower latency

10

50

400

 100

 0 1 2 3 4 5 6 7

9
9
p
 (

µ
se

c,
 lo

g
)

Throughput (Mops/s)

Minos Early Stealing Late

10X

67

Why? No convoy effect

10

50

400

 100

 0 1 2 3 4 5 6 7

9
9
p
 (

µ
se

c,
 lo

g
)

Throughput (Mops/s)

Minos Early Stealing Late

10X

68

10

50

400

 100

 0 1 2 3 4 5 6 7

9
9
p
 (

µ
se

c,
 lo

g
)

Throughput (Mops/s)

Minos Early Stealing Late

Higher throughput

69

10

50

400

 100

 0 1 2 3 4 5 6 7

9
9
p
 (

µ
se

c,
 lo

g
)

Throughput (Mops/s)

Minos Early Stealing Late

Why? No dispatch bottleneck

70

Trade-off: 99th latency of large operations

400

1000

1500

2500

 0 1 2 3 4 5 6 7 8

9
9

p
 (

µ
se

c,
 lo

g
)

Throughput (Mops/s)

Minos Stealing

71

Other results in the paper

•More item size distributions

•Dynamic workload

•Write intensive workload

• Scalability
72

Conclusion: size-aware sharding

Improve tail latency in in-memory key-value stores

• Serve small and large requests on different cores

•Minos in-memory KV: 10x lower 99th percentile latency

73

THANK YOU

ANY QUESTIONS?

74

