Size-aware sharding for
improving tail latencies in
iINn-memory key-value stores

Diego Didona (EPFL), Willy Zwaenepoel (University of Sydney)

(W ecocloud

ECOLE POLYTECHNIQUE an EPFL research center
FEDERALE DE LAUSANNE

THE UNIVERSITY OF

SYDNEY

Contributions

(1) Size-aware sharding
Improve tail latencies of in-memory key-value stores
with heterogeneous item sizes

(2) Minos in-memory key-value store
Order-of-magnitude lower 99t percentile latency

BACKGROUND

Tail latencies in high fan-out applications

Slowest reply determines request latency

SLO: N-th percentile of resp. time < X

In-memory key-value stores (KV)

* Widespread solution to deliver low latency

* Caches / non-persistent data repositories

State-of-the-art KVs: design

High-bandwidth, multi-queue NICs Run-to-completion model
+ +

Kernel-bypassing network stacks Ad hoc data structures and CC

State-of-the-art KVs: performance

usec-scale latencies @ several Mops/sec

State-of-the-art KVs: performance

usec-scale latencies @ several Mops/sec

But high tail latencies with heterogeneous item sizes

Heterogeneous item sizes are common

Facebook [SIGMETRICS12]
Wikipedia [ISCA13]
Flickr [ISCA13]
Memcachier [NSDI19]

Heterogeneous item sizes are common

Facebook [SIGMETRICS12]
Wikipedia [ISCA13]
Flickr [ISCA13]
Memcachier [NSDI19]

Heavy tail: few large requests but very costly

Why high tail latencies?

1. Head-of-line blocking

2. Convoy effect

Head-of-line blocking

Small requests enqueued behind a large

11

Convoy effect

Burst of large requests may take most (or all) cores

12

SIZE-AWARE SHARDING

Size-aware sharding

1. Small and large requests on disjoint sets of cores
=>» Avoid head-of-line blocking

2. Reserve some cores for small requests
=>» Avoid convoy effect

Size-aware sharding in operation

/

—Small cores

)

} Large cores

Size-aware sharding in operation

/

—Small cores

)

} Large cores

16

Size-aware sharding in operation

)

—Small cores

-

} Large cores

17

Size-aware sharding in operation

@\

M Small cores

} Large cores

18

Size-aware sharding in operation

)

—Small cores

} Large cores

19

Size-aware sharding in operation

@

—Small cores

-]
F—— 1

Large cores
—Ei}

20

Size-aware sharding in operation

J

—Small cores

-

} Large cores

21

Trade-off: large requests take longer

>
)

Trade-off: large requests take longer

Trade-off: large requests take longer

WITHOUT
size-aware sharding —

MINOS IN-MEMORY KV

Implementation

*Single-node, PUT-GET
* Commodity hardware

* No data durability

Minos design challenges

@ Small vs large threshold

»
»

Core partitioning

Request dispatch

27

Minos design challenges

@ Small vs large threshold

@ Core partitioning
@ Request dispatch

28

Main insight

Improve N-th percentile of latencies

¥

Improve latencies of N% smallest requests

29

Example with 99" percentile

Obtain at runtime the CDF of the sizes of accessed items

1
0.8
L
0 0.6
O
0.4
0.2

0
1.00 100.00 10,000.00 1,000,000.00

Bytes 30

Example with 99" percentile

Obtain at runtime the CDF of the sizes of accessed items
1

0.8 999
L
0 0.6
O
0.4
0.2
0
1.00 100.00 10,000.00 1,000,000.00

Bytes 31

Example with 99" percentile

Obtain at runtime the CDF of the sizes of accessed items
1

0.8 999
LL

0O 0.6
O

0.4

0.2

N~

To small cores To large cores 32

Minos design challenges

0 Small vs large threshold
@ Core partitioning
@ Request dispatch

33

Goal

Avoid
overloading
large cores

Improve small
requests

Load-proportional core allocation

K% of the load for small requests

¥

K% of small cores

35

Measuring the load of a request

Load of a request = # processed network packets

Dynamic core allocation

1. Obtain at runtime the load of requests of different sizes

|

100 10000 1000000
Bytes 37

LOAD

Dynamic core allocation

2. Fraction of small request load =] / +)

Small size threshold

LOAD

1 100 10000 1000000
Bytes 38

Dynamic core allocation

3. # Small cores = ceiling (small load * # total cores)

Small size threshold

LOAD

)

1 100 10000 1000000
Bytes 39

Minos design challenges

o Small vs large threshold
0 Core partitioning
@ Request dispatch

40

Request size unknown a priori

RX queues

— SMALL

| m ~ LARGE

’i@’ Reduce software dispatch

41

Only small cores read from the NIC

1. From its own RX queue

2. From large cores’ RX queues

Operation of small cores on a request

43

Operation of small cores on a request

Obtain size — GET: do lookup
. PUT: in header

44

Operation of small cores on a request

45

Operation of small cores on a request

 malii

Process request

46

Operation of small cores on a request

——

Process request To large core

47

Operation of small cores on a request

——

Process request To large core

SOFTWARE DISPATCH ONLY FOR FEW LARGEg

EVALUATION

Test-bed

e Server: 8 cores, 40Gbps NIC, DPDK stack

 Wkld ~ ETC Facebook [SIGMETRICS12]
*<1% large requests [1.5, 500] KB

*95:5 GET:PUT ratio

» Skewed accesses (zipf 0.99)

Competitors

1. Early binding (~ MICA [NSDI14])
2. Early binding + stealing (~ ZygOS [SOSP17])

3. Late binding (“RAMCloud [TOCS15])

Early binding (MICA, NSDI2014)

Request -> core based on key-hash of target item

RX Buffer
- — — @
r = | — — il —
GET(k) ﬂ@é <
:Ir:ts —p — @—»
-y | — e @#

Early binding (MICA, NSDI2014)

Request -> core based on key-hash of target item

RX Buffer
= —— 11— @
g = | — —) —
GET(K) ﬂ <
ele | — — i —
| | e—p — @#

Early binding (MICA, NSDI2014)

Request -> core based on key-hash of target item

RX Buffer
- — — nE—
g = | — —) —
GET(K) ﬂ <
ele | — — i —
| | e—p — @#

Early binding + stealing (ZygOS SOSP17)

Idle cores steal requests from other queues/buffers

RX Buffer

— |

//
GET(k) -%C:' '
T = L]
\

—_— L1

55

Late binding (RAMCloud TOCS15)

GET(k) ﬁ

One core receives all requests
dispatches them to idle cores

//

RX

Buffer

7

=P

56

Throughput vs overall 99t latency

. 400
o B9
S
o 90;1 00
m S
- o0
v O
= O
@)
—

0 1 2 3 4 S
Throughput (Mops/s)

More to tHe rigHt 1S Eetter l

6

57

Minos vs early binding

Minos =Early @

2400

o
3100 - -

2 3 4
Throughput (Mops/s

)5

58

Lower latency

Minos =Early @

2400

o
3100 - -

2 3 4
Throughput (Mops/s

)5

59

Why? No head-of-line blocking

Minos =Early @

2400

o
3100 - -

)5

2 3 4
Throughput (Mops/s

60

Same maximum throughput

Minos =Early @

2400

O
31 00

61

Why? Low dispatch overhead

Minos =Early @

2400

O
0:1100 - -

62

Minos vs stealing

Minos =+ Early ® Stealing %

2400

o
<§‘1OO - -

2 3 4
Throughput (Mops/s

)5

63

Lower latency
Minos =

2400

()]
<§‘1OO - -

Early ® Stealing %

)5

2 3 4
Throughput (Mops/s

64

Why? Higher load=> lower stealing

Minos =+ Early ® Stealing %

2400

o
<§‘1OO - -

)5

2 3 4
Throughput (Mops/s

65

Minos vs late binding
Minos =+ Early ® Stealing %

2400

O
cé>_1 00

)5

2 3 4
Throughput (Mops/s

Late

66

Lower latency
Minos =

2400

O
3100 - -

Early ® Stealing %

)5

2 3 4
Throughput (Mops/s

Late

67

Why? No convoy effect

Minos =+ Early ® Stealing %

2400

O
3100 - -

2 3 4
Throughput (Mops/s

)5

Late

68

Higher throughput

Minos =+ Early ® Stealing %

2 3 4 S
Throughput (Mops/s)

Late

69

Why? No dispatch bottleneck

Minos =+ Early ® Stealing %

2 3 4 S
Throughput (Mops/s)

Late

70

Trade-off: 99t [atency of large operations

2 3 4 9
Throughput (Mops/s)

Other results in the paper

* More item size distributions
* Dynamic workload
* Write intensive workload

* Scalability

Conclusion: size-aware sharding

(¢ Improve tail latency in in-memory key-value stores
- Serve small and large requests on different cores

* Minos in-memory KV: 10x lower 99t percentile latency

THANK YOU

ANY QUESTIONS®

74

