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Upon local failures, connectivity can be quickly restored
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Upon local failures, connectivity can be quickly restored
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Fast failure detection
using e.g., hardware-generated signals

Fast traffic rerouting
using e.g., Prefix Independent Convergence
or MPLS Fast Reroute



Upon remote failures, the only way to restore connectivity is
to wait for the Internet to converge

 9



 10

… and the Internet converges very slowly*

*Holterbach et al. SWIFT: Predictive Fast Reroute
ACM SIGCOMM, 2017

Upon remote failures, the only way to restore connectivity is
to wait for the Internet to converge
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Control-plane (e.g., BGP) based techniques typically converge slowly
upon remote outages
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What about using data-plane signals for fast rerouting?

Control-plane (e.g., BGP) based techniques typically converge slowly
upon remote outages
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Outline

4.  Blink works in practice, on existing devices

1. Why and how to use data-plane signals for fast rerouting

2.  Blink infers more than 80% of the failures, often within 1s

3.  Blink quickly reroutes traffic to working backup paths
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TCP flows exhibit the same behavior upon failures
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TCP flows exhibit the same behavior upon failures

Retransmission timeout (RTO)
 = SRTT + 4∗RTT_VAR
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TCP flows exhibit the same behavior upon failures
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TCP flows exhibit the same behavior upon failures
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When multiple flows experience the same failure  
the signal is a wave of retransmissions
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*CAIDA equinix-chicago
direction A, 2015
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Same RTT distribution
than in a real trace*

We simulated a failure affecting
100k flows with NS3

When multiple flows experience the same failure  
the signal is a wave of retransmissions
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Outline

4.  Blink works in practice, on existing devices

1. Why and how to use data-plane signals for fast rerouting

2.  Blink infers more than 80% of the failures, often within 1s

3.  Blink quickly reroutes traffic to working backup paths
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To detect failures, Blink looks at TCP retransmissions
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To detect failures, Blink looks at TCP retransmissions
Problem: TCP retransmissions can be unrelated to a failure (i.e., noise)
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Solution #1: Blink looks at consecutive packets 
with the same sequence number 
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Solution #2: Blink monitors the number of flows experiencing
retransmissions over time using a sliding window
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Blink is intended to run in programmable switches
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Blink is intended to run in programmable switches
Problem: those switches have very limited resources



Solution #1: Blink focuses on the popular prefixes,
i.e., the ones that attract data traffic
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As Internet traffic follows a Zipf-like distribution* (1k pref. account for >50%),
Blink covers the vast majority of the Internet traffic

*Sarra et al. Leveraging Zipf’s Law for Traffic offloading
ACM CCR, 2012

Solution #1: Blink focuses on the popular prefixes,
i.e., the ones that attract data traffic



Solution #2: Blink monitors a sample of the flows
for each monitored prefix
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TCP flows

Traffic to a destination prefix
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TCP flows

Traffic to a destination prefix

Solution #2: Blink monitors a sample of the flows
for each monitored prefix

default 64 flows
monitored



To monitor active flows, Blink evicts a flow from the sample
if it does not send a packet for a given time (default 2s)
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and selects a new one in a 
first-seen, first-selected manner

To monitor active flows, Blink evicts a flow from the sample
if it does not send a packet for a given time (default 2s)
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Blink infers a failure for a prefix when the majority of
the monitored flows experience retransmissions
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FAILURE

Blink infers a failure for a prefix when the majority of
the monitored flows experience retransmissions



We evaluated Blink failure inference using 15 real traces,
13 from CAIDA, 2 from MAWI, covering a total of 15.8 hours



We evaluated Blink failure inference using 15 real traces,
13 from CAIDA, 2 from MAWI, covering a total of 15.8 hours

We are interested in:

Accuracy: True Positive Rate vs False Positive Rate

Speed: How long does Blink take to infer failures



As we do not have ground truth, we generated synthetic traces
following the traffic characteristics extracted from the real traces
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Step #1 - We extracted the RTT, Packet rate, Flow duration
from the real traces

Step #2 - We used NS3 to replay these flows
and simulate a failure

Step #3 - We ran a Python-based version of Blink
on the resulting traces

As we do not have ground truth, we generated synthetic traces
following the traffic characteristics extracted from the real traces



1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
Trace ID

0.0

0.2

0.4

0.6

0.8
Tr

ue
 P

os
iti

ve
 R

at
e

 68

Blink failure inference accuracy is above 80% for 13 real traces out of 15

Real traces ID

True Positive Rate
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Real traces ID

True Positive Rate

Blink failure inference accuracy is above 80% for 13 real traces out of 15
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Blink avoids incorrectly inferring failures when packet loss is below 4%

packet loss % 1 2 3 4 5 8 9…

False Positive Rate
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Blink avoids incorrectly inferring failures when packet loss is below 4%
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Blink infers a failure within 1s for the majority of the cases
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Blink infers a failure within 1s for the majority of the cases
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Outline

4.  Blink works in practice, on existing devices

1. Why and how to use data-plane signals for fast rerouting

2.  Blink infers more than 80% of the failures, often within 1s

3.  Blink quickly reroutes traffic to working backup paths
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Upon detection of a failure, Blink immediately activates
backup paths pre-populated by the control-plane



Problem: since the rerouting is done entirely in the data-plane,
Blink cannot prevent forwarding issues
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Problem: since the rerouting is done entirely in the data-plane,
Blink cannot prevent forwarding issues
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Solution: As for failures, Blink uses data-plane signals
to pick a working backup path
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As for failures, Blink compares the sequence number of
consecutive packets to detect blackholes or loops*
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*See the paper for an evaluation of the rerouting
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We ran Blink on the 15 real traces (15.8 hours)
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We ran Blink on the 15 real traces (15.8 hours)
and it detected 6 outages, each affecting at least 42% of all the flows
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On current programmable switches, Blink supports up to 10k prefixes



On current programmable switches, Blink supports up to 10k prefixes
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Number of prefixes

Memory
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Number of prefixes

Memory

1 pref.

6418 bits

On current programmable switches, Blink supports up to 10k prefixes
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On current programmable switches, Blink supports up to 10k prefixes



Blink works on a real Barefoot Tofino switch
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Blink works on a real Barefoot Tofino switch
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Blink works on a real Barefoot Tofino switch
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1.1s

Blink works on a real Barefoot Tofino switch



Blink: Fast Connectivity Recovery Entirely in the Data Plane

Infers failures from data-plane signals
with more than 80% accuracy, and often within 1s

Fast reroutes traffic at line rate
to working backup paths

Works on real traffic traces and on existing devices

https://blink.ethz.ch
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