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ALEMBIC: AUTOMATED MODEL INFERENCE FOR 
STATEFUL NETWORK FUNCTIONS 



Stateful Network Functions (NFs) in Modern Networks

Firewalls and NATs

Modern networks contain a wide range of complex  
stateful network functions from many vendors 

IDS/IPSsLoad balancers
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Motivating Example: Stateful Firewall (FW)

FW

If a connection is ESTABLISHED from the LAN, 
allow TCP traffic from the WAN else DROP 

LAN WAN 

Host A 
 Host B 


SYNSYN①

  

Connection Map:  

3



Motivating Example: Stateful Firewall (FW)

FW

If a connection is ESTABLISHED from the LAN, 
allow TCP traffic from the WAN else DROP 

LAN WAN 

Host A 
 Host B 


SYNSYN①
SA SA ② 

  

Connection Map:  

3



Motivating Example: Stateful Firewall (FW)

FW

If a connection is ESTABLISHED from the LAN, 
allow TCP traffic from the WAN else DROP 

LAN WAN 

Host A 
 Host B 


SYNSYN①
SA SA ② 

  

Connection Map:  

ACK ACK③ 

3
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FW

If a connection is ESTABLISHED from the LAN, 
allow TCP traffic from the WAN else DROP 
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Host A 
 Host B 


SYNSYN①
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Motivating Example: Stateful Firewall (FW)

FW

If a connection is ESTABLISHED from the LAN, 
allow TCP traffic from the WAN else DROP 

LAN WAN 

Host A 
 Host B 


SYNSYN①
SA SA ② 

ACK ACK③ 
DATA DATA ④

  

Connection Map:  
A → B == ESTABLISHED

SYN

Host C
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Network Testing and Verification

Stateful  
NF

LAN
 WAN


Host A 
 Host B 


? • Is the policy implemented correctly?

• Can we check before on-boarding?

We need network testing/verification tools (e.g.,VMN , SYMNET, BUZZ…) 

Operator
 If a connection is ESTABLISHED from the LAN, 
allow TCP traffic from the WAN else DROP 

4



Today: Need NF Models for Testing and Verification

Stateful 
NFLAN
 WAN


Host A 
 Host B 


Model 
(e.g., finite state machine)

Testing

Verification

On-boarding

Today, these NF models are handwritten based on manual investigation 

Config with intended policy
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Limitation of Handwritten Model: Inaccuracy
Network testing tool 
e.g., BUZZ [NSDI 16] 

Test traffic 
(from BUZZ) 

Intended 
Policy

Real  
FW

Handwritten 
Model

SYN

SA

SYN

SYN

SA

SYN

SA

SYN

SA

SYN

Error! 
≠

Handwritten 

FW model
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Limitation of Handwritten Model: Inaccuracy
Network testing tool 
e.g., BUZZ [NSDI 16] 

≠

Handwritten 

FW model

Real FW implementation 

/
NULL

SYN

SA /

/ACK

SYN 
SENT

SA 
SENT

Else/

Else/

. . 
. . 

*/

SA

SYN

ACK

EST

Handwritten FW model  
(BUZZ, NSDI 16)

/
NULL

SYN

SA /

SYN 
SENT

SA 
SENT

Else/

… 

*/

SA

SYN

=
6
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Test traffic 
(from BUZZ) 

Untangle 
FW

PropNF 
FW

SYN

SA

SYN

SYN

SA

SYN

ACK

Vendor-specific differences

Limitation of Handwritten Model: Vendor Diversity

SYN

SA

SYN

Vendors have different implementations! 

7



Our Work: Alembic

Stateful

NF

Config

Customers: 

1) BUZZ [NSDI16]

2) SYMNET [SIGCOMM16]

3) VMN [NSDI17]

Automatically infer a behavioral model of the NF for a configuration

Finite State Machine (FSM)
Model = NF(config)}
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Talk Outline

• Motivation and Goal


• Challenges and Insights 

• Overall Workflow


• Evaluation
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High-Level Challenges

Stateful

NF

Inferring NF behavior  

Large configuration space

. . .

Config N

Rule 1 
Rule 2 

… 
Rule 1000Config 1
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Challenges on Large Configuration Space

• Configuration ! many rules 

• Rule ! IP/port fields take large sets of values (e.g., 232 for IPs)


• Rule ! IP/port fields can be ranges (e.g., /16 for IP prefixes)
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Rule1 

Rule2 
 

.   .   . 

RuleN

Rule1 

Rule2 
 

.   .   . 

RuleN

Insight 1: We Can Compose Models of Individual Rules

Stateful

NF

Rule1 

Rule2 
 
 

.   .   . 
RuleN

. . .

Model 

Naive solution
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Rule1 

Rule2 
 

.   .   . 

RuleN

Rule1 

Rule2 
 

.   .   . 

RuleN

Insight 1: We Can Compose Models of Individual Rules

Stateful

NF

Rule1 

Rule2 
 
 

.   .   . 
RuleN

. . .

Model2

Model1

ModelN
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Rule1 

Rule2 
 

.   .   . 

RuleN

Rule1 

Rule2 
 

.   .   . 

RuleN

Insight 1: We Can Compose Models of Individual Rules

Stateful

NF

Rule1 

Rule2 
 
 

.   .   . 
RuleN

. . .

Process 
Order

“compose” per rule models

Model2

Model1

ModelN

12



Challenges on Large Configuration Space

• Configuration ! many rules 

• Rule ! IP/port fields take large sets of values (e.g., 232 for IPs)


• Rule ! IP/port fields can be ranges (e.g., /16 for IP prefixes)
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Insight 2: Use Symbolic Models to represent Large Sets
Rule 1: SRC IP:10… DST IP:15

S0 S1

10→15

15→10

Else 
10→15

15→10

Rule 2: SRC IP:12… DST IP:15

12→15
Else 

12→15

S0 S1

15→1215→12
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Insight 2: Use Symbolic Models to represent Large Sets
Rule 1: SRC IP:10… DST IP:15

S0 S1

10→15

15→10

Else 
10→15

15→10

Rule 2: SRC IP:12… DST IP:15

12→15
Else 

12→15

S0 S1

15→1215→12

SRC IP:A… DST IP:B

M(A,B) = 
S0 S1

A→B

B→A

Else 
A→B

B→A
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Insight 2: Use Symbolic Models to represent Large Sets
Rule 1: SRC IP:10… DST IP:15

S0 S1

10→15

15→10

Else 
10→15

15→10

Rule 2: SRC IP:12… DST IP:15

12→15
Else 

12→15

S0 S1

M(A,B) where A = 13, B = 16SRC IP:13… DST IP:16If we get a new config:

15→1215→12

SRC IP:A… DST IP:B

M(A,B) = 
S0 S1

A→B

B→A

Else 
A→B

B→A
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Challenges on Large Configuration Space

• Configuration ! many rules 

• Rule ! IP/port fields take large sets of values (e.g., 232 for IPs)


• Rule ! IP/port fields can be ranges (e.g., /16 for IP prefixes)
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Insight 3: Exploit Independence to Create an Ensemble of FSMs
SRC IP:10.1.1.0/16…DST IP:15.1.1.0/16
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Insight 3: Exploit Independence to Create an Ensemble of FSMs
SRC IP:10.1.1.0/16…DST IP:15.1.1.0/16

Independent packet processing per connection
Per-connection

Conn 1 : 10.1.1.1 → 15.1.1.1

Conn 2 : 10.1.1.2 → 15.1.1.2
States do not interfere}

1616



Insight 3: Exploit Independence to Create an Ensemble of FSMs
SRC IP:10.1.1.0/16…DST IP:15.1.1.0/16

An ensemble of concrete FSMs can represent a rule with IP/port ranges

Per-connection

(symbolic model  
from insight 2)

Learn 

M(A, B)

[10.1.1.1→15.1.1.1] 

S0 S1

10.1.1.1…

15.1.1.1…

Else 

10.1.1.1…

15.1.1.1…

Instantiate

at runtime

Ensemble of FSMs

Independent packet processing per connection
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Summary of Insights to Address Large Configuration Space

A configuration is composed of many number of rules 

Compositional Model

A rule contains IP/port fields which take large sets of values and ranges. 

An Ensemble of FSMsSymbolic Model
Instantiation
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Back to High-Level Challenges

Stateful

NF

Inferring NF behavior  

Large configuration space

. . .

Config N

Rule 1 
Rule 2 

… 
Rule 1000Config 1
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• Inferring the symbolic FSM 

• Inferring the state granularity


• Handling dynamic header modification

Challenges on Inferring NF Behavior

19



Insight: Leverage L* Algorithm to Infer a Symbolic FSM

NF

Config

Alembic

Blackbox 
L* algorithm

≡ 
FSM representing the blackbox

We can use the L* algorithm!
20



Background on L* for Black-box FSM Inference

Input Alphabet  
(Σ = {a,b})

• Generates sequences (e.g., aa, aba) and probes the blackbox 

• Builds a hypothesis FSM with input-output pairs seen so far 

• Queries an Equivalence Oracle (EO) for counterexamples

Blackbox

L* Equivalence 
Oracle

21



Practical Challenges of Applying L* for an NF

•  Generate input alphabet  


•  Classify output of an NF 

•  Build an Equivalence Oracle
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Generating Input Alphabet to handle Large Traffic Space

Stateful

NF

Rule1: SRC IP:A…DST IP:B 
Naive solutions:  

1. Exhaustively generating packets 

2. Randomly generating packets 

Infeasible

Does not explore the relevant state space
LAN WAN
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Generating Input Alphabet to handle Large Traffic Space

To exercise the rule, we generate packets with IP/ports in the rule

Stateful

NF

Rule1: SRC IP:A…DST IP:B 
Naive solutions:  

1. Exhaustively generating packets 

2. Randomly generating packets 

Infeasible

Does not explore the relevant state space

1)  Find IP/port fields that appear in the rule 
     Generate the packet for for all interfaces 
     using A and B

     A→B

B→A

A→B

B→A

LAN WAN
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Generating Input Alphabet to handle Large Traffic Space

To exercise the rule, we generate packets with IP/ports in the rule

Stateful

NF

Rule1: SRC IP:A…DST IP:B 
Naive solutions:  

1. Exhaustively generating packets 

2. Randomly generating packets 

Infeasible

Does not explore the relevant state space

1)  Find IP/port fields that appear in the rule 
     Generate the packet for for all interfaces 
     using A and B

     

LAN WAN 2)  (Optional) Prune based on reachability

3)  Plug in “packet types” 

SYN,  
A→B

SYNACK,  
A→B

SYN, 
B→A

SA, 
B→A

… … 
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•  Generate input alphabet  


•  Classify output of an NF


• Configure the “timeout” to classify output


• Translating to/from symbolic and concrete packets


•  Build an Equivalence Oracle

Practical Challenges of Applying L* for an NF
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Challenges on Inferring NF Behavior

• Inferring the symbolic model (FSM)  

• Inferring the state granularity  

• Handling dynamic header modification
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Different Types of State Granularity

Cross-connection One FSM for all connections

Per-source One FSM for each srcip

Per-destination One FSM for each dstip

Per-connection One FSM for every IP-port pair

State Granularity: the state variables (IP/ports) that the NF uses to keep state

This is like a “key” mapping to the FSM 
26



Learning the State Granularity

A

A’

B

B’

DST IPSRC IP
conn1

conn2 Cross-connection

Do these affect  
the “same” FSM? 

No

A
B

B’

conn1

conn2
Per-source

Do these affect  
the “same” FSM? 

No .   .   .
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Learning the State Granularity

A

A’

B

B’

DST IPSRC IP
conn1

conn2 Cross-connection

Do these affect  
the “same” FSM? 

No

A
B

B’

conn1

conn2
Per-source

Do these affect  
the “same” FSM? 

No .   .   .Construct test cases for independence across connections
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Alembic Workflow: Offline

Library of  
symbolic models

RuleType i :

(Keyi,  SymFSMi)

KeyLearning

VendorDoc

NF

PacketTypes

RuleTypeGen

RuleTypei

FSMInference  
(Extended L*)

Runs once per NF

Distributed Learning

28



Alembic Workflow: Online
Runs for every config 

Concrete config

Instantiate(Rule1)


. . .

Instantiate(Rule2)


Instantiate(RuleN)


Rule1 
Rule2  
.   .   . 

RuleN

RuleType i :

(Keyi,  SymFSMi)

If packet p match Rule1:

Ensemble(Rule1)

Elif packet p match Rule2:

Ensemble(Rule2)

. . .
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Evaluation Summary

• Alembic-generated models are accurate 


• Case Studies: Alembic finds differences across NF 
implementations 

• Alembic workflow is scalable 

• Alembic-generated models improve the accuracy of 
network testing/verification tools 

30



Evaluation Setup
• Validated Alembic using Click-based NFs where we know the ground truth

• Real NFs we modeled : 


• PfSense (FW, static NAT, random NAT, LB) 

• Proprietary NF (FW, static NAT)

• Untangle (FW) 

• HAproxy (LB)


• Packet types used: 

• Correct-Seq: {SYNC, SYN-ACKC, ACKC, FIN-ACKC, RST-ACKC} 

• Combined-Seq: extend the correct-seq set with incorrect seq and ack,  

{SYN-ACKI, ACKI, FIN-ACKI, RST-ACKI}
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Accuracy Evaluation

1) Iperf testing: 100% across all settings for all NFs 

2) Random Packet testing (randomly choosing IP/port):  
                                     99.8% to 100% across all settings for all NFs


3) Rule Activation testing  (choosing IP/port to activate one rule):  
                                     94.8% to 100% across all settings for all NFs 

• Config generation: 1 to 100 rules in a configuration

• Packet generation: 20 to 300 packets in a sequence

Since we do not have the ground-truth, we designed complementary 
testing methodology to test the accuracy of our models
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Evaluation Summary

• Alembic-generated models are accurate 


• Case Studies: Alembic finds differences across NF 
implementations 

• Alembic workflow is scalable 

• Alembic-generated models improve the accuracy of 
network testing/verification tools 

33



Firewall Case Study
PfSense ProprietaryNF

Packet sequence before 
the FW allows TCP traffic 
from an external host (B ) 
to an internal host (A)

Number of states 3 79

Default behavior Default Drop Default Drop 

SYN,  
A→B

SYN,  
A→B

SA,  
B→A
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• Implements “default allow”

• Connection-terminating

Firewall Case Study: Untangle Firewall

0

*

SYN

/
* /

SYN /
1

SYN

ACK

/
/

2
SA/SA ACK

SYN / SA

SA / ACK

ACK /
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• Implements “default allow”

• Connection-terminating

Firewall Case Study: Untangle Firewall

0

*

SYN

/
* /

SYN /
1

SYN

ACK

/
/

2
SA/SA ACK

SYN / SA

SA / ACK

ACK /

When B responds with SA,  
the FW preemptively responds with ACK
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• Implements “default allow”

• Connection-terminating

Firewall Case Study: Untangle Firewall

0

*

SYN

/
* /

SYN /
1

SYN

ACK

/
/

2
SA/SA ACK

SYN / SA

SA / ACK

ACK /

When A replies with ACK, the 
FW drops to prevent duplicates
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• Implements “default allow”

• Connection-terminating

Firewall Case Study: Untangle Firewall

0

*

SYN

/
* /

SYN /
1

SYN

ACK

/
/

2
SA/SA ACK

SYN / SA

SA / ACK

ACK /

Takeaways: 
1) Vendor diversity (no common practice) 

2) The real FSMs are complex and are infeasible for humans to manually generate
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Other Findings

• FW: models with incorrect seq ! large FSM (257 states for PfSense)


• FW: many do not correctly handle out-of-window packets


• LB: HAproxy (connection-terminating) vs. PfSense (destination NAT)

. . . 
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Evaluation Summary

• Alembic-generated models are accurate 


• Case Studies: Alembic finds differences across NF 
implementations 

• Alembic workflow is scalable 

• Alembic-generated models improve the accuracy of 
network testing/verification tools 
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Scalability of Alembic Online

Number of Rules Runtime

10 0.075 s

100 0.6 s

1,000 5 s

Alembic can generate concrete models in a few seconds for a large config
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Limitations and Future Work
Assumption on configurations:  
• Assume at most one rule is applied

• States across different state granularities (i.e., keys) are independent

• Assume that IP/port fields are treated homogeneously such that we can pick one 

representative sample and infer a model


Assumption on NF actions:  
• Focused on modeling TCP-relevant behavior where actions are restricted to 

dropping and forwarding, possibly with IP/port modifications

• Do not explicitly model temporal effects

• Support the following state granularity types: per-connection, per-source, per-

destination, cross-connection, and stateless


Future work:  
• Dealing with more complex NFs (e.g., rate-limiting NF, modeling temporal effects)
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Conclusions: Alembic can accurately model stateful NFs

• Network testing and verification today need NF models 


• Handwritten models: tedious, error-prone, and inaccurate


• Alembic: infers a high-fidelity NF model given a configuration 


• Our evaluations show: 


• Alembic finds implementation-specific behavior of NFs


• Alembic-generated models increase the accuracy of testing/
verification


• Alembic is scalable and accurate

Soo-Jin Moon: soojinm@andrew.cmu.edu
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