
Soo-Jin Moon
Jeffrey Helt, Yifei Yuan, Yves Bieri,

Sujata Banerjee, Vyas Sekar, Wenfei Wu, Mihalis Yannakakis, Ying Zhang

Carnegie Mellon Univ., Princeton Univ., Intentionet, ETH Zurich,

VMware Research, Tsinghua Univ., Columbia Univ., Facebook, Inc.

Contributions by Soo-Jin Moon were made in-part during a former internship at Hewlett Packard Labs.  
Other contributors from former employees at Hewlett Packard Labs include Sujata Banerjee, Ying Zhang and Wenfei Wu.

ALEMBIC: AUTOMATED MODEL INFERENCE FOR
STATEFUL NETWORK FUNCTIONS

Stateful Network Functions (NFs) in Modern Networks

Firewalls and NATs

Modern networks contain a wide range of complex  
stateful network functions from many vendors

IDS/IPSsLoad balancers

2

Motivating Example: Stateful Firewall (FW)

FW

If a connection is ESTABLISHED from the LAN,
allow TCP traffic from the WAN else DROP

LAN WAN

Host A
 Host B

SYNSYN①

Connection Map:

3

Motivating Example: Stateful Firewall (FW)

FW

If a connection is ESTABLISHED from the LAN,
allow TCP traffic from the WAN else DROP

LAN WAN

Host A
 Host B

SYNSYN①
SA SA ②

Connection Map:

3

Motivating Example: Stateful Firewall (FW)

FW

If a connection is ESTABLISHED from the LAN,
allow TCP traffic from the WAN else DROP

LAN WAN

Host A
 Host B

SYNSYN①
SA SA ②

Connection Map:

ACK ACK③

3

Motivating Example: Stateful Firewall (FW)

FW

If a connection is ESTABLISHED from the LAN,
allow TCP traffic from the WAN else DROP

LAN WAN

Host A
 Host B

SYNSYN①
SA SA ②

Connection Map:

ACK ACK③
DATA DATA ④

A → B == ESTABLISHED

3

Motivating Example: Stateful Firewall (FW)

FW

If a connection is ESTABLISHED from the LAN,
allow TCP traffic from the WAN else DROP

LAN WAN

Host A
 Host B

SYNSYN①
SA SA ②

ACK ACK③
DATA DATA ④

Connection Map:
A → B == ESTABLISHED

SYN

Host C

3

Network Testing and Verification

Stateful  
NF

LAN
 WAN

Host A
 Host B

? • Is the policy implemented correctly?

• Can we check before on-boarding?

We need network testing/verification tools (e.g.,VMN , SYMNET, BUZZ…)

Operator
 If a connection is ESTABLISHED from the LAN,
allow TCP traffic from the WAN else DROP

4

Today: Need NF Models for Testing and Verification

Stateful 
NFLAN
 WAN

Host A
 Host B

Model
(e.g., finite state machine)

Testing

Verification

On-boarding

Today, these NF models are handwritten based on manual investigation

Config with intended policy

5

Limitation of Handwritten Model: Inaccuracy
Network testing tool
e.g., BUZZ [NSDI 16] 

Test traffic 
(from BUZZ)

Intended
Policy

Real
FW

Handwritten
Model

SYN

SA

SYN

SYN

SA

SYN

SA

SYN

SA

SYN

Error!
≠

Handwritten

FW model

6

Limitation of Handwritten Model: Inaccuracy
Network testing tool
e.g., BUZZ [NSDI 16] 

Test traffic 
(from BUZZ)

Intended
Policy

Real
FW

Handwritten
Model

SYN

SA

SYN

SYN

SA

SYN

SA

SYN

SA

SYN

≠

Handwritten

FW model

6

Limitation of Handwritten Model: Inaccuracy
Network testing tool
e.g., BUZZ [NSDI 16] 

≠

Handwritten

FW model

Real FW implementation

/
NULL

SYN

SA /

/ACK

SYN
SENT

SA 
SENT

Else/

Else/

. .
. .

*/

SA

SYN

ACK

EST

Handwritten FW model  
(BUZZ, NSDI 16)

/
NULL

SYN

SA /

SYN
SENT

SA 
SENT

Else/

…

*/

SA

SYN

=
6

Limitation of Handwritten Model: Inaccuracy
Network testing tool
e.g., BUZZ [NSDI 16] 

≠

Handwritten

FW model

Real FW implementation

/
NULL

SYN

SA /

/ACK

SYN
SENT

SA 
SENT

Else/

Else/

. .
. .

*/

SA

SYN

ACK

EST

Handwritten FW model  
(BUZZ, NSDI 16)

/
NULL

SYN

SA /

SYN
SENT

SA 
SENT

Else/

…

*/

SA

SYN

=
6

Limitation of Handwritten Model: Inaccuracy
Network testing tool
e.g., BUZZ [NSDI 16] 

≠

Handwritten

FW model

Real FW implementation

/
NULL

SYN

SA /

/ACK

SYN
SENT

SA 
SENT

Else/

Else/

. .
. .

*/

SA

SYN

ACK

EST

Handwritten FW model  
(BUZZ, NSDI 16)

/
NULL

SYN

SA /

SYN
SENT

SA 
SENT

Else/

…

*/

SA

SYN

=
6

Test traffic 
(from BUZZ)

Untangle
FW

PropNF 
FW

SYN

SA

SYN

SYN

SA

SYN

ACK

Vendor-specific differences

Limitation of Handwritten Model: Vendor Diversity

SYN

SA

SYN

Vendors have different implementations!

7

Our Work: Alembic

Stateful

NF

Config

Customers:

1) BUZZ [NSDI16]

2) SYMNET [SIGCOMM16]

3) VMN [NSDI17]

Automatically infer a behavioral model of the NF for a configuration

Finite State Machine (FSM)
Model = NF(config)}

8

Talk Outline

• Motivation and Goal

• Challenges and Insights

• Overall Workflow

• Evaluation

9

High-Level Challenges

Stateful

NF

Inferring NF behavior  

Large configuration space

. . .

Config N

Rule 1
Rule 2

…
Rule 1000Config 1

10

Challenges on Large Configuration Space

• Configuration ! many rules

• Rule ! IP/port fields take large sets of values (e.g., 232 for IPs)

• Rule ! IP/port fields can be ranges (e.g., /16 for IP prefixes)

11

Rule1 

Rule2 
 

. . . 

RuleN

Rule1 

Rule2 
 

. . . 

RuleN

Insight 1: We Can Compose Models of Individual Rules

Stateful

NF

Rule1 

Rule2 
 
 

. . .
RuleN

. . .

Model

Naive solution

12

Rule1 

Rule2 
 

. . . 

RuleN

Rule1 

Rule2 
 

. . . 

RuleN

Insight 1: We Can Compose Models of Individual Rules

Stateful

NF

Rule1 

Rule2 
 
 

. . .
RuleN

. . .

Model2

Model1

ModelN

12

Rule1 

Rule2 
 

. . . 

RuleN

Rule1 

Rule2 
 

. . . 

RuleN

Insight 1: We Can Compose Models of Individual Rules

Stateful

NF

Rule1 

Rule2 
 
 

. . .
RuleN

. . .

Process 
Order

“compose” per rule models

Model2

Model1

ModelN

12

Challenges on Large Configuration Space

• Configuration ! many rules

• Rule ! IP/port fields take large sets of values (e.g., 232 for IPs)

• Rule ! IP/port fields can be ranges (e.g., /16 for IP prefixes)

13

Insight 2: Use Symbolic Models to represent Large Sets
Rule 1: SRC IP:10… DST IP:15

S0 S1

10→15

15→10

Else
10→15

15→10

Rule 2: SRC IP:12… DST IP:15

12→15
Else

12→15

S0 S1

15→1215→12

14

Insight 2: Use Symbolic Models to represent Large Sets
Rule 1: SRC IP:10… DST IP:15

S0 S1

10→15

15→10

Else
10→15

15→10

Rule 2: SRC IP:12… DST IP:15

12→15
Else

12→15

S0 S1

15→1215→12

SRC IP:A… DST IP:B

M(A,B) =
S0 S1

A→B

B→A

Else
A→B

B→A

14

Insight 2: Use Symbolic Models to represent Large Sets
Rule 1: SRC IP:10… DST IP:15

S0 S1

10→15

15→10

Else
10→15

15→10

Rule 2: SRC IP:12… DST IP:15

12→15
Else

12→15

S0 S1

M(A,B) where A = 13, B = 16SRC IP:13… DST IP:16If we get a new config:

15→1215→12

SRC IP:A… DST IP:B

M(A,B) =
S0 S1

A→B

B→A

Else
A→B

B→A

14

Challenges on Large Configuration Space

• Configuration ! many rules

• Rule ! IP/port fields take large sets of values (e.g., 232 for IPs)

• Rule ! IP/port fields can be ranges (e.g., /16 for IP prefixes)

15

Insight 3: Exploit Independence to Create an Ensemble of FSMs
SRC IP:10.1.1.0/16…DST IP:15.1.1.0/16

16

Insight 3: Exploit Independence to Create an Ensemble of FSMs
SRC IP:10.1.1.0/16…DST IP:15.1.1.0/16

Independent packet processing per connection
Per-connection

Conn 1 : 10.1.1.1 → 15.1.1.1

Conn 2 : 10.1.1.2 → 15.1.1.2
States do not interfere}

1616

Insight 3: Exploit Independence to Create an Ensemble of FSMs
SRC IP:10.1.1.0/16…DST IP:15.1.1.0/16

An ensemble of concrete FSMs can represent a rule with IP/port ranges

Per-connection

(symbolic model  
from insight 2)

Learn

M(A, B)

[10.1.1.1→15.1.1.1]

S0 S1

10.1.1.1…

15.1.1.1…

Else

10.1.1.1…

15.1.1.1…

Instantiate

at runtime

Ensemble of FSMs

Independent packet processing per connection

16

Summary of Insights to Address Large Configuration Space

A configuration is composed of many number of rules

Compositional Model

A rule contains IP/port fields which take large sets of values and ranges.

An Ensemble of FSMsSymbolic Model
Instantiation

17

Back to High-Level Challenges

Stateful

NF

Inferring NF behavior  

Large configuration space

. . .

Config N

Rule 1
Rule 2

…
Rule 1000Config 1

18

• Inferring the symbolic FSM

• Inferring the state granularity

• Handling dynamic header modification

Challenges on Inferring NF Behavior

19

Insight: Leverage L* Algorithm to Infer a Symbolic FSM

NF

Config

Alembic

Blackbox
L* algorithm

≡
FSM representing the blackbox

We can use the L* algorithm!
20

Background on L* for Black-box FSM Inference

Input Alphabet  
(Σ = {a,b})

• Generates sequences (e.g., aa, aba) and probes the blackbox

• Builds a hypothesis FSM with input-output pairs seen so far

• Queries an Equivalence Oracle (EO) for counterexamples

Blackbox

L* Equivalence
Oracle

21

Practical Challenges of Applying L* for an NF

• Generate input alphabet

• Classify output of an NF

• Build an Equivalence Oracle

22

Generating Input Alphabet to handle Large Traffic Space

Stateful

NF

Rule1: SRC IP:A…DST IP:B
Naive solutions:

1. Exhaustively generating packets

2. Randomly generating packets

Infeasible

Does not explore the relevant state space
LAN WAN

23

Generating Input Alphabet to handle Large Traffic Space

To exercise the rule, we generate packets with IP/ports in the rule

Stateful

NF

Rule1: SRC IP:A…DST IP:B
Naive solutions:

1. Exhaustively generating packets

2. Randomly generating packets

Infeasible

Does not explore the relevant state space

1) Find IP/port fields that appear in the rule
 Generate the packet for for all interfaces 
 using A and B

 A→B

B→A

A→B

B→A

LAN WAN

23

Generating Input Alphabet to handle Large Traffic Space

To exercise the rule, we generate packets with IP/ports in the rule

Stateful

NF

Rule1: SRC IP:A…DST IP:B
Naive solutions:

1. Exhaustively generating packets

2. Randomly generating packets

Infeasible

Does not explore the relevant state space

1) Find IP/port fields that appear in the rule
 Generate the packet for for all interfaces 
 using A and B

 A→B

B→A

LAN WAN 2) (Optional) Prune based on reachability

23

Generating Input Alphabet to handle Large Traffic Space

To exercise the rule, we generate packets with IP/ports in the rule

Stateful

NF

Rule1: SRC IP:A…DST IP:B
Naive solutions:

1. Exhaustively generating packets

2. Randomly generating packets

Infeasible

Does not explore the relevant state space

1) Find IP/port fields that appear in the rule
 Generate the packet for for all interfaces 
 using A and B

LAN WAN 2) (Optional) Prune based on reachability

3) Plug in “packet types”

SYN,
A→B

SYNACK,
A→B

SYN,
B→A

SA,
B→A

… …

23

• Generate input alphabet

• Classify output of an NF

• Configure the “timeout” to classify output

• Translating to/from symbolic and concrete packets

• Build an Equivalence Oracle

Practical Challenges of Applying L* for an NF

24

Challenges on Inferring NF Behavior

• Inferring the symbolic model (FSM)

• Inferring the state granularity

• Handling dynamic header modification

25

Different Types of State Granularity

Cross-connection One FSM for all connections

Per-source One FSM for each srcip

Per-destination One FSM for each dstip

Per-connection One FSM for every IP-port pair

State Granularity: the state variables (IP/ports) that the NF uses to keep state

This is like a “key” mapping to the FSM
26

Learning the State Granularity

A

A’

B

B’

DST IPSRC IP
conn1

conn2 Cross-connection

Do these affect  
the “same” FSM?

No

A
B

B’

conn1

conn2
Per-source

Do these affect  
the “same” FSM?

No . . .

27

Learning the State Granularity

A

A’

B

B’

DST IPSRC IP
conn1

conn2 Cross-connection

Do these affect  
the “same” FSM?

No

A
B

B’

conn1

conn2
Per-source

Do these affect  
the “same” FSM?

No . . .Construct test cases for independence across connections

27

Alembic Workflow: Offline

Library of
symbolic models

RuleType i :

(Keyi, SymFSMi)

KeyLearning

VendorDoc

NF

PacketTypes

RuleTypeGen

RuleTypei

FSMInference  
(Extended L*)

Runs once per NF

Distributed Learning

28

Alembic Workflow: Online
Runs for every config

Concrete config

Instantiate(Rule1)

. . .

Instantiate(Rule2)

Instantiate(RuleN)

Rule1
Rule2  
. . .

RuleN

RuleType i :

(Keyi, SymFSMi)

If packet p match Rule1:

Ensemble(Rule1)

Elif packet p match Rule2:

Ensemble(Rule2)

. . .

29

Evaluation Summary

• Alembic-generated models are accurate

• Case Studies: Alembic finds differences across NF
implementations

• Alembic workflow is scalable

• Alembic-generated models improve the accuracy of
network testing/verification tools

30

Evaluation Setup
• Validated Alembic using Click-based NFs where we know the ground truth

• Real NFs we modeled :

• PfSense (FW, static NAT, random NAT, LB)

• Proprietary NF (FW, static NAT)

• Untangle (FW)

• HAproxy (LB)

• Packet types used:

• Correct-Seq: {SYNC, SYN-ACKC, ACKC, FIN-ACKC, RST-ACKC}

• Combined-Seq: extend the correct-seq set with incorrect seq and ack,  

{SYN-ACKI, ACKI, FIN-ACKI, RST-ACKI}

31

Accuracy Evaluation

1) Iperf testing: 100% across all settings for all NFs

2) Random Packet testing (randomly choosing IP/port):  
 99.8% to 100% across all settings for all NFs

3) Rule Activation testing (choosing IP/port to activate one rule):  
 94.8% to 100% across all settings for all NFs

• Config generation: 1 to 100 rules in a configuration

• Packet generation: 20 to 300 packets in a sequence

Since we do not have the ground-truth, we designed complementary
testing methodology to test the accuracy of our models

32

Evaluation Summary

• Alembic-generated models are accurate

• Case Studies: Alembic finds differences across NF
implementations

• Alembic workflow is scalable

• Alembic-generated models improve the accuracy of
network testing/verification tools

33

Firewall Case Study
PfSense ProprietaryNF

Packet sequence before
the FW allows TCP traffic
from an external host (B)
to an internal host (A)

Number of states 3 79

Default behavior Default Drop Default Drop

SYN,  
A→B

SYN,  
A→B

SA,  
B→A

34

Firewall Case Study
PfSense ProprietaryNF

Packet sequence before
the FW allows TCP traffic
from an external host (B)
to an internal host (A)

Number of states 3 79

Default behavior Default Drop Default Drop

SYN,  
A→B

SYN,  
A→B

SA,  
B→A

34

Firewall Case Study
PfSense ProprietaryNF

Packet sequence before
the FW allows TCP traffic
from an external host (B)
to an internal host (A)

Number of states 3 79

Default behavior Default Drop Default Drop

SYN,  
A→B

SYN,  
A→B

SA,  
B→A

34

• Implements “default allow”

• Connection-terminating

Firewall Case Study: Untangle Firewall

0

*

SYN

/
* /

SYN /
1

SYN

ACK

/
/

2
SA/SA ACK

SYN / SA

SA / ACK

ACK /

35

• Implements “default allow”

• Connection-terminating

Firewall Case Study: Untangle Firewall

0

*

SYN

/
* /

SYN /
1

SYN

ACK

/
/

2
SA/SA ACK

SYN / SA

SA / ACK

ACK /

When B responds with SA,  
the FW preemptively responds with ACK

35

• Implements “default allow”

• Connection-terminating

Firewall Case Study: Untangle Firewall

0

*

SYN

/
* /

SYN /
1

SYN

ACK

/
/

2
SA/SA ACK

SYN / SA

SA / ACK

ACK /

When A replies with ACK, the 
FW drops to prevent duplicates

35

• Implements “default allow”

• Connection-terminating

Firewall Case Study: Untangle Firewall

0

*

SYN

/
* /

SYN /
1

SYN

ACK

/
/

2
SA/SA ACK

SYN / SA

SA / ACK

ACK /

Takeaways:
1) Vendor diversity (no common practice)

2) The real FSMs are complex and are infeasible for humans to manually generate

35

Other Findings

• FW: models with incorrect seq ! large FSM (257 states for PfSense)

• FW: many do not correctly handle out-of-window packets

• LB: HAproxy (connection-terminating) vs. PfSense (destination NAT)

. . .

36

Evaluation Summary

• Alembic-generated models are accurate

• Case Studies: Alembic finds differences across NF
implementations

• Alembic workflow is scalable

• Alembic-generated models improve the accuracy of
network testing/verification tools

37

Scalability of Alembic Online

Number of Rules Runtime

10 0.075 s

100 0.6 s

1,000 5 s

Alembic can generate concrete models in a few seconds for a large config

38

Limitations and Future Work
Assumption on configurations:
• Assume at most one rule is applied

• States across different state granularities (i.e., keys) are independent

• Assume that IP/port fields are treated homogeneously such that we can pick one

representative sample and infer a model

Assumption on NF actions:
• Focused on modeling TCP-relevant behavior where actions are restricted to

dropping and forwarding, possibly with IP/port modifications

• Do not explicitly model temporal effects

• Support the following state granularity types: per-connection, per-source, per-

destination, cross-connection, and stateless

Future work:
• Dealing with more complex NFs (e.g., rate-limiting NF, modeling temporal effects)

39

Conclusions: Alembic can accurately model stateful NFs

• Network testing and verification today need NF models

• Handwritten models: tedious, error-prone, and inaccurate

• Alembic: infers a high-fidelity NF model given a configuration

• Our evaluations show:

• Alembic finds implementation-specific behavior of NFs

• Alembic-generated models increase the accuracy of testing/
verification

• Alembic is scalable and accurate

Soo-Jin Moon: soojinm@andrew.cmu.edu

40

mailto:soojinm@andrew.cmu.edu

