# Monoxide

### Scale out Blockchains with Asynchronous Consensus Zones

Jiaping Wang, Hao Wang Sinovation Ventures ICT/CAS The Ohio State University









Decentralized Communication: IP & IP Routing Decentralized Storage: BitTorrent / DHT

# **Decentralized Computing**

- Immutable Logic, faithful execution
- Trustworthy result, verifiable trustlessly
- Unstoppable, no manipulation
- Unblockable, permissionless

Decentralized Communication: IP & IP Routing Decentralized Storage: BitTorrent / DHT

# **Decentralized Computing**

- Immutable Logic, faithful execution
- Trustworthy result, verifiable trustlessly
- Unstoppable, no manipulation
- Unblockable, permissionless

### Not Scalable: Low TPS



### Not Scalable: Low TPS



### Asynchronous Consensus Zones

- Consensus Zones: Multi-instantiation of independent blockchain systems
- Partitioning workloads of the entire network, distribute to zones
- Parallelize block creation and transaction handling
- Linear scalable as the entire network is divided into more zones

Zone 1



Zone *n*-1

Zone 0

## SYSTEM DESIGN

### Partitioning in Consensus Zones

Zone Count: *n*=2<sup>k</sup>

User Address:

**c6**4493a658f6ffca1fc8884120c7f7b5c0940946

First *k*-bits maps to zone index

| Consensus Zone #0   |
|---------------------|
|                     |
| Consensus Zone #1   |
|                     |
| Consensus Zone #2   |
|                     |
| Consensus Zone #3   |
|                     |
| →                   |
| Consensus Zone #n-1 |
|                     |

### Partitioning in Consensus Zones

#### Zone Count: *n*=2<sup>k</sup>





#### Zone isolates

- Mining competition and chain growth
- State (ledger) for intra-zone users only
- Unconfirmed TX (mempool)
- Gossip network

| Consensus Zone #1   |  |
|---------------------|--|
| Consensus Zone #2   |  |
|                     |  |
| Consensus Zone #n-1 |  |

#### Scalability

#### ✓ Linear scaled capacity: CPU, Memory, Disk I/O

× Throughput ?? Cross-zone transaction ??

Consensus Zone #0

Consensus Zone #1

Consensus Zone #2

Consensus Zone #3

... ...

Consensus Zone #*n*-1

#### Scalability

✓ Linear scaled capacity: CPU, Memory, Disk I/O

× Throughput ?? Cross-zone transaction ??

Security × Attack bar: mining power dilution ?? ✓ Sybil resistant

| Consensus Zone #0   |  |  |
|---------------------|--|--|
| Consensus Zone #1   |  |  |
| Consensus Zone #2   |  |  |
| Consensus Zone #3   |  |  |
|                     |  |  |
| Consensus Zone #n-1 |  |  |

#### Scalability

✓ Linear scaled capacity: CPU, Memory, Disk I/O

× Throughput ?? Cross-zone transaction ??

Security × Attack bar: mining power dilution ?? ✓ Sybil resistant

#### Decentralization

Permissionless mining
Low barrier of participate (full nodes)

| Consonsus Zono #0   |
|---------------------|
|                     |
|                     |
|                     |
| Consensus Zone #1   |
|                     |
|                     |
| Consensus Zone #2   |
|                     |
|                     |
| Consensus Zone #3   |
|                     |
|                     |
|                     |
|                     |
|                     |
| Consensus Zone #n-1 |
|                     |

#### Scalability

✓ Linear scaled capacity: CPU, Memory, Disk I/O

× Throughput ?? Cross-zone transaction ??

Security × Attack bar: mining power dilution ?? ✓ Sybil resistant

#### Decentralization

✓ Permissionless mining✓ Low barrier of participate (full nodes)

| Consensus Zone #0   |
|---------------------|
|                     |
| Consensus Zone #1   |
|                     |
| Consensus Zone #2   |
|                     |
| Consensus Zone #3   |
|                     |
|                     |
| Consensus Zone #n-1 |

### Contributions

#### #1 Efficient Cross-Zone Transaction Handling

Atomic Transfer: Transfer x tokens from user A to user B from different zones Conditional Operation:  $A \leftarrow A - x$ ,  $(A \ge x)$  Unconditional Operation:  $B \leftarrow B + x$ 

### Contributions

#### #1 Efficient Cross-Zone Transaction Handling

Atomic Transfer: Transfer x tokens from user A to user B from different zones Conditional Operation:  $A \leftarrow A - x$ ,  $(A \ge x)$  Unconditional Operation:  $B \leftarrow B + x$ 

#### #2 Mining Power Diluted with Multiple Zones Focused Attack on a Specific Individual Zone (1% attack)

## **CROSS-ZONE TRANSACTION**

### Cross-Zone

#### **Payment Transaction**

Transfer x tokens from user A to user B in different zones

 $\mathsf{A} \leftarrow \mathsf{A}$  - x , ( $\mathsf{A} \geqq x$ )

Conditional Operation Order-dependent  $B \leftarrow B + x$ 

Unconditional Operation Order-independent

### **Cross-Zone**

#### **Payment Transaction**

Transfer x tokens from user A to user B in different zones

 $\mathsf{A} \leftarrow \mathsf{A}$  - x , ( $\mathsf{A} \geqq x$ )

Conditional Operation Order-dependent



Execute in Zone A Update A's balance  $B \leftarrow B + x$ 

Unconditional Operation Order-independent



Execute in Zone B Update B's balance

### Cross-Zone

#### **Payment Transaction**

Transfer x tokens from user A to user B in different zones



### **Message Passing**

#### Payment Transaction = Initiate TX + Relay TX Transfer x tokens from user A to user B in different zones



### **Eventual Atomicity**

Payment Transaction = Initiate TX + Relay TX Transfer x tokens from user A to user B in different zones



## MINING POWER DILUTION

### Security Issue: Single-Zone Focused Attack



### **Effective Mining Power**

Total Hashrate: *t* hash/sec Total Effective Mining Power: *t* hash/sec

### **Effective Mining Power**



Total Hashrate: *t* hash/sec Total Effective Mining Power: *t* hash/sec

### Chu-ko-nu Mining (诸葛连弩)



Total Hashrate: t hash/sec Total Effective Mining Power:  $t \times n$  hash/sec

### Chu-ko-nu Mining (诸葛连弩)



## **Experimental Result**

#### **Experiment Setup**

Playback ERC20 historical payment transactions

16.5 M Addresses 75.8 M Transactions

30Mbps per-node 15.6 TPS per-zone 1 to 2048 zones



### Takeaways

- Monoxide achieves scalability, security and decentralization at the same time
- Monoxide Partitions all workload
  - o communication, transaction processing, state representation, history archiving

disk I/O

- Network bandwidth, computing power, memory size,
- Eventual Atomicity: Efficient cross-zone transaction handling
- Chu-ko-nu Mining: Security guarantee for individual zones
- We achieved 10K TPS, and Million TPS is possible
- Neutral to actual consensus algorithm used in zones

Our project will be open source and offer the new generation blockchain platform at <a href="https://monoxide.io">https://monoxide.io</a> Twitter: @monoxide\_io

# Monoxide

#### Scale out Blockchains with Asynchronous Consensus Zones