
dShark: A General, Easy to Program 
and Scalable Framework for Analyzing 

In-network Packet Traces

1

Da Yu† , Yibo Zhu§ , Behnaz Arzani§ , Rodrigo Fonseca† , 
Tianrong Zhang§ , Karl Deng§ , Lihua Yuan§

†Brown University §Microsoft



Network reliability is critical

2

Cloudflare: A bad config (router rule) 
caused all of their edge routers to 
crash, taking down all of Cloudflare.

Etsy: Sending multicast traffic without 
properly configuring switches caused 
an Etsy global outage.

Stack Overflow: A bad firewall config 

blocked stackexchange/stackoverflow.



End-host 
based

Topology or hardware 
specific

Target on specific 
problems

Trumpet[SIGCOMM’16]
Sonata[SIGCOMM’18]

PathDump[OSDI’16]

007[NSDI’18]
SwitchPointer[NSDI’18]

Pingmesh[SIGCOMM’15]

INT

Existing tools are the first attempts

3



4

EverFlow[SIGCOMM’15]

In-network packet capture is the last resort

Analyzing the in-network packet traces is challenging!

pkt

NetSight[NSDI’14]



In-network analysis: challenges

5

Analysis logic varies
• Logic is different case by case

Volume
• 3.33 Mpps line-speed (10 Gbps, 1500 Bytes)



Example: Route error checker

hasRouteError(path) -> true / false

6

pkt



Example: Route error checker

hasRouteError(path) -> true / false

7

pkt



Example: Route error checker

hasRouteError(path) -> true / false

8

pkt



Example: Route error checker

hasRouteError(path) -> true / false

9

pkt

Streaming
Processor

Result 
aggregator



In-network analysis: challenges

10

Difficult to get robust analysis
• Header transformation

• Headers are modified by the middleboxes

Analysis logic varies
• Logic is different case by case

Volume
• 3.33 Mpps line-speed (10 Gbps, 1500 Bytes)



11

Packet headers are modified by middleboxes

X

GW ISP

ISP-Y 
Switch

Cloud 
Edge

Cloud 
WAN

Y(MSFT)

Server

Datacenter

Gateway

SLB

Server

T2

T1 T0

Outside our networks

Ingress flow
Egress flow

switch/router mirror w/ERSPAN

VLAN VXLAN
GRE

IP-in-IP

Outside flow
switch/router mirror w/GRE

Header format

Headers added after mirroring Mirrored headers

ETHERNET IPV4 ERSPAN ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET 802.1Q IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 GRE IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 GRE IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 GRE ETHERNET IPV4 TCP

ETHERNET IPV4 GRE IPV4 GRE ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 GRE ETHERNET IPV4 TCP



Header format

Headers added after mirroring Mirrored headers

ETHERNET IPV4 ERSPAN ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET 802.1Q IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 GRE IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 GRE IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 GRE ETHERNET IPV4 TCP

ETHERNET IPV4 GRE IPV4 GRE ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 GRE ETHERNET IPV4 TCP

Same protocol headers bring ambiguity

12



dShark: three goals

13

Broadly applicable

Robust in the wild
• Header transformation

Scalable



dShark: three goals

14

Broadly applicable

Robust in the wild
• Header transformation

Scalable
• Components work independently and in parallel.



dShark: three goals

15

Broadly applicable

Robust in the wild
• Header transformation

Scalable
• Components work independently and in parallel.



How operators manually process traces

16

Observation #1:
• Four diagnosis steps: parse, filter, aggregate and analyze

Need to tightly integrated with the collecting infrastructure!

pkt

Filter, Partition (SQL)
Map (MapReduce)

Group by (SQL)
Shuffle (MapReduce)

User-defined Func. (SQL)
Reduce (MapReduce)

Parsers

Groupers

Query 
Processors



How operators manually process traces

17

One-Hop Multi-Hop

check 
appearance 
of a packet

show full path of 
each packet 

in the network

diagnose 
middlebox 
behaviors

complicated cases 
that requires end 

information

One-Packet

Multi-Packet

Observation #2:
• Diagnosis logic always run on top of 4 aggregation types



Declarative: how to 
parse, summarize 
and group pkts

Imperative: how to 
process groups of 
packets

Query function:
hasRouteError(path)

Pkt spec.:
All instances of the 
same packet

dShark’s programming model

18

pkt

Parsers

Groupers

Query 
Processors

Decl. packet spec.:
• Familiar to the operators
Imp. query function:
• Flexible for analysis logic



{
Summary: {
Key: [ipId, seqNum],
Additional: [ttl]

},

Name: {
ipId: ipv4.id,
seqNum: tcp.seq,
ttl: ipv4.ttl

}
}

Declarative spec. in parsers and groupers

19

Definition of a packet summary

How to extract the 
values in the header

A packet summary is a byte array that only contains fields that the 
operators are interested in.



Header format

Headers added after mirroring Mirrored headers

ETHERNET IPV4 ERSPAN ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET 802.1Q IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 GRE IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 GRE IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 GRE ETHERNET IPV4 TCP

ETHERNET IPV4 GRE IPV4 GRE ETHERNET IPV4 TCP

ETHERNET IPV4 ERSPAN ETHERNET IPV4 GRE ETHERNET IPV4 TCP

Same protocol headers bring ambiguity

20

ipv4[0] ipv4[3]
ipv4[-1]



{
Summary: {
Key: [ipId, seqNum],
Additional: [ttl]

},

Name: {
ipId: ipv4[-1].id,
seqNum: tcp[-1].seq,
ttl: ipv4[:].ttl

}
}

Declarative spec. in parsers and groupers

21

Definition of a packet summary

How to extract the 
values in the header



Pair<Object, Object> query (const vector<Summary>& group) {

// ReconstructS the path based on TTL
constructPath(group);

// Checks path
bool result = hasRouteError(group);

return make_pair(result, 1);
}

Imperative diagnosis logic in the query 
processors

22

• In practice, this is implemented in 49 lines of code for the query function! 



dShark overview

23

pkt

parse

eth
ip.addr

ip.id

ip.ttl

tcp.seq

data

extract shuffle query
abnormal: X

normal: Y

Parser Grouper Query 
Processor

read

• Reads packets
• Parses, extracts fields for 

summaries
• Sends summaries based on 

the keys

• Receives summaries 
• Aggregates summaries 

based on the keys
• Analyze summary 

groups
• Returns the output

summary
2 7

2 7

5 8

2 7

5 8

5 8

group

2 7

2 7

5 8

5 8

5 8



{
Summary: {
Key: [ipId, seqNum],
Additional: [vip, pip]

},

Name: {
ipId: ipv4[-1].id,
seqNum: tcp[-1].seq,
vip: ipv4[-1].dst,
pip: ipv4[0].dst

}
}

Another example: load balancer profiler

24

Spec:

Func.:

Pair<Pair<IP, IP>, int> query(group) {
// Validate data
...

return Pair((Pair(vip, pip), 1);
}

• Innermost ipId and tcp seq # to identify a packet
• Virtual IP and the physical IP

• Returns the map

• In practice, this is implemented in 18 lines of code for the query function! 



25

Group
pattern Application Analysis logic In-nw

ck. only
Header
transf.

Query
LOC

One
packet
on one

hop

Loop-free detection [21]
Detect forwarding loop

Group: same packet(ipv4[0].ipid, tcp[0].seq) on one hop
Query: does the same packet appear multiple times on the same hop No No 8

Overloop-free detection [69]
Detect forwarding loop involving tunnels

Group: same packet(ipv4[0].ipid, tcp[0].seq) on tunnel endpoints
Query: does the same packet appear multiple times on the same endpoint Yes Yes 8

One
packet on
multiple

hops

Route detour checker
Check packet’s route in failure case

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) on all switches
Query: is valid detour in the recovered path(ipv4[:].ttl) No Yes* 49

Route error
Detect wrong packet forwarding

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) on all switches
Query: get last correct hop in the recovered path(ipv4[:].ttl) No* Yes* 49

Netsight [21]
Log packet’s in-network lifecycle

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) on all switches
Query: recover path(ipv4[:].ttl) No* Yes* 47

Hop counter [21]
Count packet’s hop

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) on all switches
Query: count record No* Yes* 6

Multiple
packets

on
one
hop

Traffic isolation checker [21]
Check whether hosts are allowed to talk

Group: all packets at dst ToR(SWITCH=dst ToR)
Query: have prohibited host(ipv4[0].src) No No 11

Middlebox(SLB, GW, etc) profiler
Check correctness/performance of middleboxes

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) pre/post middlebox
Query: is middlebox correct(related fields) Yes Yes 18†

Packet drops on middleboxes
Check packet drops in middleboxes

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) pre/post middlebox
Query: exist ingress and egress trace Yes Yes 8

Protocol bugs checker(BGP, RDMA, etc) [69]
Identify wrong implementation of protocols

Group: all BGP packets at target switch(SWITCH=tar SW)
Query: correctness(related fields) of BGP(FLTR: tcp[-1].src|dst=179) Yes Yes* 23‡

Incorrect packet modification [21]
Check packets’ header modification

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) pre/post the modifier
Query: is modification correct (related fields) Yes Yes* 4⇧

Waypoint routing checker [21, 43]
Make sure packets (not) pass a waypoint

Group: all packets at waypoint switch(SWITCH=waypoint)
Query: contain flow(ipv4[-1].src+dst, tcp[-1].src+dst) should (not) pass Yes No 11

DDoS diagnosis [43]
Localize DDoS attack based on statistics

Group: all packets at victim’s ToR(SWITCH=vic ToR)
Query: statistics of flow(ipv4[-1].src+dst, tcp[-1].src+dst) No Yes* 18

Multiple
packets

on
multiple

hops

Congested link diagestion [43]
Find flows using congested links

Group: all packets(ipv4[-1].ipid, tcp[-1].seq) pass congested link
Query: list of flows(ipv4[-1].src+dst, tcp[-1].src+dst) No* Yes* 14

Silent black hole localizer [43, 69]
Localize switches that drop all packets

Group: packets with duplicate TCP(ipv4[-1].ipid, tcp[-1].seq)
Query: get dropped hop in the recovered path(ipv4[:].ttl) No* Yes* 52

Silent packet drop localizer [69]
Localize random packet drops

Group: packets with duplicate TCP(ipv4[-1].ipid, tcp[-1].seq)
Query: get dropped hop in the recovered path(ipv4[:].ttl) No* Yes* 52

ECMP profiler [69]
Profile flow distribution on ECMP paths

Group: all packets at ECMP ingress switches(SWITCH in ECMP)
Query: statistics of flow(ipv4[-1].src+dst, tcp[-1].src+dst) No* No 18

Traffic matrix [43]
Traffic volume between given switch pairs

Group: all packets at given two switches(SWITCH in tar SW)
Query: total volume of overlapped flow(ipv4[-1].src+dst, tcp[-1].src+dst) No* Yes* 21

Table 2: We implemented 18 typical diagnosis applications in dShark. “No*” in column “in-network checking only” means this application can also be done
with end-host checking with some assumptions. “Yes*” in column “header transformation” needs to be robust to header transformation in our network, but, in
other environments, it might not. “ipv4[:].ttl” in the analysis logic means dShark concatenates all ivp4’s TTLs in the header. It preserves order information even
with header transformation. Sorting it makes path recovery possible. †We profiled SLB. ‡We focused on BGP route filter. ⇧We focused on packet encapsulation.

3) for offline analysis, we hope that dShark can run faster than
the packet timestamps. Therefore, dShark must horizontally
scale up within one server, or scale out across multiple servers.
Ideally, dShark should have near-linear speed up with more
computing resources.

4 dShark Design

dShark is designed to allow for the analysis of distributed
packet traces in near real time. Our goal in its design has been
to allow for scalability, ease of use, generality, and robustness.
In this section, we outline dShark’s design and how it allows
us to achieve these goals. At a high level, dShark provides a
domain-specific language for expressing distributed network
monitoring tasks, which runs atop a map-reduce-like infras-
tructure that is tightly coupled, for efficiency, with a packet
capture infrastructure. The DSL primitives are designed to

enable flexible filtering and grouping of packets across the
network, while being robust to header transformations and
capture noise that we observe in practice.

4.1 A Concrete Example

To diagnose a problem with dShark, an operator has to write
two related pieces: a declarative set of trace specifications
indicating relevant fields for grouping and summarizing pack-
ets; and an imperative callback function to process groups of
packet summaries.

Here we show a basic example – detecting forwarding
loops in the network with dShark. This means dShark must
check whether or not any packets appear more than once
at any switch. First, network operators can write the trace
specifications as follows, in JSON:
1 {

2 Summary: {

Please 
check the 
paper for 
details!



dShark: three goals

26

Robust in the wild
• Header transformation

• Define packet signature in the summary.
• Leverage the index of protocol.

• Capture noise

Scalable
• Components work independently and in parallel.

Broadly applicable
• dShark’s programming model is general.
• It supports 4 types of aggregation that covers 18 typical analysis apps.



switch Dswitch Cswitch B

Tolerate capture noise

27

switch A

collectors

packet

External
network

Network 
Boundary

1. Recover by the next hop(s)
2. Leverage end-to-end information

X X



Performance of dShark

28

• 8 VMs from a public cloud

• Each has:
• 16-core 2.4GHz vCPU
• 56GB memory
• 10Gbps virtual network

• Feed with real traces from production



dShark scales nearly linearly

29

Overall
Figure 6: Single parser performance with
different packet headers.

Figure 7: Single grouper performance with
different average group sizes.

Figure 8: Single query processor perfor-
mance with different query functions.

1(2
S3

g)

2(4
S6

g)

1o
r3(

6S
9g

)

4(8
S1

2g
)

8(1
6S

24
g)

1umber of servers

4
8

12
16
20
24
28

Th
ro

ug
hS

ut
(0

SS
s)

ideal(linear)
d6harN

Figure 9: dShark performance scales near linearly.

from CPU for better performance. However, dShark already
delivers sufficient throughput for analyzing 40Gbps online
packet captures per server (§6) in a practical setting. Mean-
while, dShark, as a pure software solution, is more flexible,
has lower hardware cost, and provides operators a program-
ming interface they are familiar with. Thus, we believe that
dShark satisfies the current demand of our operators. That
said, in an environment that is fully deployed with highly
programmable switches,6 it is promising to explore hardware-
based trace analysis like Marple [42].

8 Related Work

dShark, to the best of our knowledge, is the first framework
that allows for the analysis of distributed packet traces in the
face of noise, complex packet transformations, and large net-
work traces. Perhaps the closest to dShark are PathDump [56]
and SwitchPointer [57]. They diagnose problems by adding
metadata to packets at each switch and analyzing them at the
destination. However, this requires switch hardware modifi-
cation that is not widely available in today’s networks. Also,
in-band data shares fate with the packets, making it hard to di-
agnose problems where packets do not reach the destination.

Other related work that has been devoted to detection and
diagnosis of network failures includes:
Switch hardware design for telemetry [21, 28, 32, 36, 42].

While effective, these work require infrastructure changes that
are challenging or even not possible due to various practical
reasons. Therefore, until these capabilities are mainstream,
the need to for distributed packet traces remains. Our sum-
maries may resemble NetSight’s postcards [21], but postcards
are fixed, while our summaries are flexible, can handle trans-
formations, and are tailored to the queries they serve.
Algorithms based on inference [3, 8, 19, 20, 22, 38, 40, 53,

54,68]. A number of works use anomaly detection to find the

6Unfortunately, this can take some time before happening. In some
environments, it may never happen.

source of failures within networks. Some attempt to cover
the full topology using periodic probes [20]. However, such
probing results in loss of information that often complicates
detecting certain types of problems which could be easily
detected using packet traces from the network itself. Other
such approaches, e.g., [38,40,53,54], either rely on the packet
arriving endpoints and thus cannot localize packet drops, or
assume specific topology. Work such as EverFlow [68] is
complementary to dShark. Specifically, dShark’s goal is to an-
alyze distributed packet captures fed by Everflow. Finally, [7]
can only identify the general type of a problem (network,
client, server) rather than the responsible device.
Work on detecting packet drops. [11, 16, 17, 23–25, 29, 33,

37, 39, 41, 46, 60, 63, 65–67] While these work are often ef-
fective at identifying the cause of packet drops, they cannot
identify other types of problems that often arise in practice
e.g., load imbalance. Moreover, as they lack full visibility
into the network (and the application) they often are unable
to identify the cause of problems for specific applications [6].
Failure resilience and prevention [4,9,10,18,27,30,34,35,

47,48,51,55,62] target resilience or prevention to failures via
new network architectures, protocols, and network verifica-
tion. dShark is complementary to these works. While they
help avoid problematic areas in the network, dShark identifies
where these problems occur and their speedy resolution.

9 Conclusion

We present dShark, a general and scalable framework for
analyzing in-network packet traces collected from distributed
devices. dShark provides a programming model for operators
to specify trace analysis logic. With this programming model,
dShark can easily address complicated artifacts in real world
traces, including header transformations and packet capturing
noise. Our experience in implementing 18 typical diagnosis
tasks shows that dShark is general and easy to use. dShark
can analyze line rate packet captures and scale out to multiple
servers with near-linear speedup.

Acknowledgments

We thank our shepherd, Anja Feldmann, and the anonymous
reviewers for their insightful comments. Da Yu was partly
funded by NSF grant CNS-1320397.

References

[1] Data plane development kit (DPDK). http://dpdk.org/, 2018.
Accessed on 2018-01-25.

5% diff 
vs ideal



Some findings 

30

until which timestamp they should continue processing pack-
ets. The parsers will report their progress once they reach the
target timestamp and wait for the next instruction. Once all
parsers report completion, the coordinator sends out the next
target timestamp. This guarantees that the progress of differ-
ent parsers will never differ too much. To avoid stragglers,
the coordinator may drop parsers that are consistently slower.
Over-provision the number of instances. Although it may
be hard to accurately estimate the minimum number of in-
stances needed (see §6) due to the different CPU overhead
of various packet headers and queries, we use conservative
estimation and over-provision instances. It only wastes negli-
gible CPU cycles because we implement all components to
spend CPU cycles only on demand.

6 dShark Evaluation

We used dShark for analyzing the in-network traces collected
from our production networks4. In this section, we first
present a few examples where we use dShark to check some
typical network properties and invariants. Then, we evaluate
the performance of dShark.

6.1 Case Study

We implement 18 typical analysis tasks using dShark (Ta-
ble 2). We explain three of them in detail below.
Loop detection. To show the correctness of dShark, we per-
form a controlled experiment using loop detection analysis as
an example. We first collected in-network packet traces (more
than 10M packets) from one of our networks and verified that
there is no looping packet in the trace. Then, we developed
a script to inject looping packets by repeating some of the
original packets with different TTLs. The script can inject
with different probabilities.

We use the same code as in §4.1. Figure 4 illustrates the
number of looping packets that are injected and the number
of packets caught by dShark. dShark has zero false negative
or false positive in this controlled experiment.
Profiling load balancers. In our data center, layer-4 soft-
ware load balancers (SLB) are widely deployed under ToR
switches. They receive packets with a virtual IP (VIP) as the
destination and forward them to different servers (called DIP)
using IP-in-IP encapsulation, based on flow-level hashing.
Traffic distribution analysis of SLBs is handy for network
operators to check whether the traffic is indeed balanced.

To demonstrate that dShark can easily provide this, we
randomly picked a ToR switch that has an SLB under it. We
deployed a rule on that switch that mirrors all packets that
go towards a specific VIP and come out. In one hour, our
collectors captured more than 30M packets in total.5

Our query function generates both flow counters and packet

4All the traces we use in evaluation are from clusters running internal
services. We do not analyze our cloud customers traffic without permission.

5An SLB is responsible for multiple VIPs. The traffic volume can vary a
lot across different VIPs.

10% 15% 20%
Loop LnjectLon rate

0

50000

100000

150000

200000

3a
cN

et
 1

uP
be

r

98440

147996

198033
Lnject
detect

Figure 4: Injected loops are all
detected.

Figure 5: Traffic to an SLB VIP
has been distributed to destina-
tion IPs.

counters of each DIP. Figure 5 shows the result – among the
total six DIPs, DIP5 receives the least packets whereas DIP6
gets the most. Flow-level counters show a similar distribution.
After discussing with operators, we conclude that for this VIP,
load imbalance does exist due to imbalanced hashing, while
it is still in an acceptable range.
Packet drop localizer. Noise can affect the packet drop
localizer. Here we briefly evaluate the effectiveness of using
transport-level retransmission information to reduce false
positives (§4.5). We implemented the packet drop localizer as
shown in Table 2, and used the noise mitigation mechanism
described in §4.5. In a production data center, we deployed
a mirroring rule on all switches to mirror all packets that
originate from or go towards all servers, and fed the captured
packets to dShark. We first compare our approach, which
takes into account gaps in the sequence of switches, and uses
retransmissions as evidence of actual drops, with a naı̈ve
approach, that just looks at the whether the last captured
hop is the expected hop. Since the naı̈ve approach does not
work for drops at the last switch (including ToR and the data
center boundary Tier-2 spine switches), for this comparison
we only considered packets whose last recorded switch were
leaf (Tier-1) switches. The naı̈ve approach reports 5,599
suspected drops while dShark detects 7. The reason for the
difference is drops of mirrored packets, which we estimated
in our log to be approximately 2.2%. The drops detected by
dShark are real, because they generated retransmissions with
the same TCP sequence number.

Looking at all packets (and not only the ones whose traces
terminate at the Tier-1 switches), we replayed the trace while
randomly dropping capture packets with increasing probabili-
ties. dShark reported 5,802, 5,801, 5,801 and 5,784 packet
drops under 0%, 1%, 2% and 5% probabilities respectively.
There is still a possibility that we miss the retransmitted
packet, but, from the result, it is very low (0.3%).

6.2 dShark Component Performance

Next, we evaluate the performance of dShark components
individually. For stress tests, we feed offline traces to dShark
as fast as possible. To represent commodity servers, we use
eight VMs from our public cloud platform, each has a Xeon
16-core 2.4GHz vCPU, 56GB memory and 10Gbps virtual
network. Each experiment is repeated for at least five times
and we report the average. We verify the speed difference
between the fastest run and slowest run is within 5%.
Parser. The overhead of the parser varies based on the layers

until which timestamp they should continue processing pack-
ets. The parsers will report their progress once they reach the
target timestamp and wait for the next instruction. Once all
parsers report completion, the coordinator sends out the next
target timestamp. This guarantees that the progress of differ-
ent parsers will never differ too much. To avoid stragglers,
the coordinator may drop parsers that are consistently slower.
Over-provision the number of instances. Although it may
be hard to accurately estimate the minimum number of in-
stances needed (see §6) due to the different CPU overhead
of various packet headers and queries, we use conservative
estimation and over-provision instances. It only wastes negli-
gible CPU cycles because we implement all components to
spend CPU cycles only on demand.

6 dShark Evaluation

We used dShark for analyzing the in-network traces collected
from our production networks4. In this section, we first
present a few examples where we use dShark to check some
typical network properties and invariants. Then, we evaluate
the performance of dShark.

6.1 Case Study

We implement 18 typical analysis tasks using dShark (Ta-
ble 2). We explain three of them in detail below.
Loop detection. To show the correctness of dShark, we per-
form a controlled experiment using loop detection analysis as
an example. We first collected in-network packet traces (more
than 10M packets) from one of our networks and verified that
there is no looping packet in the trace. Then, we developed
a script to inject looping packets by repeating some of the
original packets with different TTLs. The script can inject
with different probabilities.

We use the same code as in §4.1. Figure 4 illustrates the
number of looping packets that are injected and the number
of packets caught by dShark. dShark has zero false negative
or false positive in this controlled experiment.
Profiling load balancers. In our data center, layer-4 soft-
ware load balancers (SLB) are widely deployed under ToR
switches. They receive packets with a virtual IP (VIP) as the
destination and forward them to different servers (called DIP)
using IP-in-IP encapsulation, based on flow-level hashing.
Traffic distribution analysis of SLBs is handy for network
operators to check whether the traffic is indeed balanced.

To demonstrate that dShark can easily provide this, we
randomly picked a ToR switch that has an SLB under it. We
deployed a rule on that switch that mirrors all packets that
go towards a specific VIP and come out. In one hour, our
collectors captured more than 30M packets in total.5

Our query function generates both flow counters and packet

4All the traces we use in evaluation are from clusters running internal
services. We do not analyze our cloud customers traffic without permission.

5An SLB is responsible for multiple VIPs. The traffic volume can vary a
lot across different VIPs.

Figure 4: Injected loops are all
detected.

DI31 DI32 DI33 DI34 DI35 DI360
5
10
15
20
25
30

3e
rc
en
tD
ge

pkt
Ilow

Figure 5: Traffic to an SLB VIP
has been distributed to destina-
tion IPs.

counters of each DIP. Figure 5 shows the result – among the
total six DIPs, DIP5 receives the least packets whereas DIP6
gets the most. Flow-level counters show a similar distribution.
After discussing with operators, we conclude that for this VIP,
load imbalance does exist due to imbalanced hashing, while
it is still in an acceptable range.
Packet drop localizer. Noise can affect the packet drop
localizer. Here we briefly evaluate the effectiveness of using
transport-level retransmission information to reduce false
positives (§4.5). We implemented the packet drop localizer as
shown in Table 2, and used the noise mitigation mechanism
described in §4.5. In a production data center, we deployed
a mirroring rule on all switches to mirror all packets that
originate from or go towards all servers, and fed the captured
packets to dShark. We first compare our approach, which
takes into account gaps in the sequence of switches, and uses
retransmissions as evidence of actual drops, with a naı̈ve
approach, that just looks at the whether the last captured
hop is the expected hop. Since the naı̈ve approach does not
work for drops at the last switch (including ToR and the data
center boundary Tier-2 spine switches), for this comparison
we only considered packets whose last recorded switch were
leaf (Tier-1) switches. The naı̈ve approach reports 5,599
suspected drops while dShark detects 7. The reason for the
difference is drops of mirrored packets, which we estimated
in our log to be approximately 2.2%. The drops detected by
dShark are real, because they generated retransmissions with
the same TCP sequence number.

Looking at all packets (and not only the ones whose traces
terminate at the Tier-1 switches), we replayed the trace while
randomly dropping capture packets with increasing probabili-
ties. dShark reported 5,802, 5,801, 5,801 and 5,784 packet
drops under 0%, 1%, 2% and 5% probabilities respectively.
There is still a possibility that we miss the retransmitted
packet, but, from the result, it is very low (0.3%).

6.2 dShark Component Performance

Next, we evaluate the performance of dShark components
individually. For stress tests, we feed offline traces to dShark
as fast as possible. To represent commodity servers, we use
eight VMs from our public cloud platform, each has a Xeon
16-core 2.4GHz vCPU, 56GB memory and 10Gbps virtual
network. Each experiment is repeated for at least five times
and we report the average. We verify the speed difference
between the fastest run and slowest run is within 5%.
Parser. The overhead of the parser varies based on the layers

Please check the paper for details!!

Case 1:
Profile an SLB

Case 2:
Detect loops

Naïve 5,588
dShark 7

Case 3:
Detect packet drops on T1

Retran. as 
evidence 
of actual 

drops

Diff. caused by noise



Conclusion

• dShark is a general, easy-to-program, scalable and high-
performance in-network packet trace analyzer.

• Takeaways:
• dShark’s programming model is broadly applicable
• We use this model to implement 18 different typical diagnosis apps

• Operators focus on the logic without worrying about:
• Header transformation, capture noise, scalability

• dShark is fast and can scale linearly

31


