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Distributed Control Planes

Configuration Example
interface GigabitEthernet0/1
ip address 1.0.1.1 255.255.0.0
ip ospf cost 1
router ospf 10
network 3.0.1.2 0.0.255.255 area 0
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Router Configurations are Complex

interface GigabitEthernet0/1 * Multiple routing protocols
ip address 1.0.1.1 255.255.0.0 e BGP
ip ospf cost 1 . OSPF

interface GigabitEthernet0/2
ip address 10.11.11.1 255.255.0.0
!
| router bgp 300 |
neighbor 2.2.2.2 route-map COMM out
!
route-map COMM permit 10
set community 1:1 additive
set local-preference 150
!
| router ospf 10 |
network 3.0.1.2 0.0.255.255 area O




Router Configurations are Complex

interface GigabitEthernet0/1 * Multiple routing protocols
ip address 1.0.1.1 255.255.0.0 « BGP
| ip ospfcost1 | .
i OSPF
interface GigabitEthernet0/2 * ..
ip address 10.11.11.1 255.255.0.0 o Multiple routing metrics
I
router bgp 300 * ospf cost
neighbor 2.2.2.2 route-map COMM out * local preference

route-map COMM permit 10
set community 1:1 additive

Lset local-preference 150

router ospf 10
network 3.0.1.2 0.0.255.255 area O



Router Configurations are Complex

interface GigabitEthernet0/1 * Multiple routing protocols
ip address 1.0.1.1 255.255.0.0 « BGP

ip ospf cost 1 .

| OSPF

interface GigabitEthernet0/2 * ..

ip address 10.11.11.1 255.255.0.0 o Multiple routing metrics
!

router bgp 300 * ospf cost

neighbor 2.2.2.2 route-map COMM out * local preference

! N

route-map COMM permit 10 . .

set community 1:1 additive * Multiple filters

set local-preference 150 * Community

router ospf 10
network 3.0.1.2 0.0.255.255 area O



Configuration Complexity Make Errors
Common

BGP errors are tg blame for Mo i
nday’s Twitter Level 3 blames huge network
outage, not DDoS attacks Y =r outage on human error

No, your toaster didn’t Kill Twitter, an engineer did

Level 3 says new prevention
measures being taken; now on to
Hurricane Matthew

Google made a finy error

and it broke half the Xbox Live outage caused by network configuration
infernet in Japan ﬂffﬂ?m. |
e MIX GOOGLE e

Microsoft: misconfigured
network device led to
Azure outage

United says router issue
responsible for

grounding all flights
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Configuration Complexity Make Errors
Common

BGP errors are tg blame for Mo
nday’s Twit Level 3 blames huge network
outage, not DDoS attacks v ter outage on human error

No, your toaster didn’t Kill Twitter, an engineer did

Level 3 says new prevention
measures being taken; now on to

e . Verification tools can proactlvely check for failures

and it broke
infernet in Japan

w by MIX — 7 weeks ago in GOOGLE

= Caused by network configuration

problem

Microsoft: misconfigured
network device led to
Azure outage

30 July 2012 | By Yevgeniy Sverdlik

United says router issue
responsible for

grounding all flights
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Coverage

Multiple Network Verification tools

@ @

. t: i Minesweeper  Plankton
(NgDII'S15) (SIGCOMM ’17)  (NSDI’20)

®

ARC

° ® (SIGCOMM’16)
Bagpipe ERA ®
(00PSLA’16) (0SDI'16) PREX

(CONEXT’18)

Performance
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Coverage

Multiple Network Verification tools

@ O ®
® .

Batfish (géngéme&ei;) PIank”con Tiramisu
(NSDI'15) (NSDI'20)  (Nspr'20)

®

ARC

® o (SIGCOMM'16)
Bagpipe ERA @
(00PSIA’16) (OSDI'16) P-REX

Goal: A verification tool that has good coverage and good
performance

Performance
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Coverage

Multiple Network Verification tools

® O ®
@ :
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® o (SIGCOMM'16)
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Goal: A verification tool that has good coverage and good
performance

Performance

15



Performance VS Coverage

* ARC (SIGCOMM’16)
* Graph algorithms

= 4
R 2
T = LN

Nor A

Network Weighted Graphs

configurations
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Performance VS Coverage
* ARC (SIGCOMM’16) * Minesweeper (SIGCOMM’17)

* Graph algorithms * Symbolic encoding

| Network configurations I‘

— 4
T = IR
% . , ‘ | Routing Algorithms |Q| SMT Constraints |
gz’—a v
; = |Po|icies| ’ l
Network Weighted Graphs
configurations [ Z3 solver ]
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Cross Layer Dependency
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Cross Layer Dependency

IBGP uses OSPF computed route to reach next hop router
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Cross Layer Dependency

ROUTERD = | 262 €

Dst | NextHop

ROUTER C

ROUTER B

Dst

NextHop
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Cross Layer Dependency

ROUTER C
Dst | NextHop

ROUTERD = | 262 €

Dst | NextHop
B

ROUTER B
Dst | NextHop

21



Cross Layer Dependency

ROUTER C

ROUTERD = | 262 €

Dst | NextHop

ROUTER B

Dst | NextHop
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Cross Layer Dependency

ROUTER C

Dst | NextHop

ROUTER B

Dst | NextHop

Cross Layer Dependency:
IBGP - OSPF
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Cross Layer Dependency

ROUTER C

ROUTERD = | 262 €

Dst | NextHop

ROUTER B
Dst | NextHop
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Cross Layer Dependency

ROUTER C

ROUTERD = | 262 €

Dst | NextHop
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ROUTER B
Dst | NextHop
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Cross Layer Dependency

ROUTERD = | Zlen) oo

Dst | NextHop

ROUTER C

ROUTER B

Dst

NextHop
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Cross Layer Dependency

ROUTERD = | Zlen) oo

Dst | NextHop

ROUTER C

ROUTER B

Dst

NextHop

NextHop
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Cross Layer Dependency

ROUTER D

Dst | NextHop

ROUTER C

NextHop

ROUTER B

Dst | NextHop
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ARC and Minesweeper

* ARC (SIGCOMM’16)
@a®
e o

* Insufficient feature coverage

* No IBGP, local preference,
community, ....
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ARC and Minesweeper

* ARC (SIGCOMM'’16)

\/
® e

* |Insufficient feature coverage

* No IBGP, local preference,
community, ....

* Minesweeper (SIGCOMM’17)

192.0.0.0<o0
out.prefix < 1
out.valid = t
best.valid =
best.valid =

192.0.0.0 < out.prefix

out.pre
out.vali
best.va
best.va

192.0.0.0 < out.prefix
out.prefix <192.1.0.0
out.valid = true
best.valid = out.lp =120
best.valid = out.ad = 20

e Poor performance
* replicate model for iBGP
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Insights

Configurations

NETWORK
MODEL
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Insights

Configurations

NETWORK
MODEL

$
o

Model | Verification
ARC Graph Graph
Minesweeper SMT SMT
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Insights

Configurations

NETWORK
MODEL

$
o

high coverage

Model | Verificatio
| low coverageL high performance
ARC Graph Graph e
Minesweeper SMT SMT~

low performance
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Insights

Configurations

(i

high coverage

Model | Verificatio
| low coverageL high performance
ARC Graph Graph e
Minesweeper SMT SMT~

low performance

[

Insight 1: Decouple network encoding from verification algorithm ]

INC1T VVUNN
MODEL
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Insights

Multilayer graph with
vector of edge weights

Configurations

NETWORK
MODEL

35



Insights

Multilayer graph with

vector of edge weights

Categories
policies based
on fidelity

°

Configurations

NETWORK
MODEL
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Insights

Configurations

Multilayer graph with NETWORK
vector of edge weights MODEL

[ 4 &

Cf)fieﬁ:;'s;se Ml VERIFICATION Wl VERIFICATION VERIFICATION
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Insights

Configurations Policy 1: Which path is preferred?
C->B<<C->D-B

Multilayer graph with NETWORK
vector of edge weights MODEL

°

&

Categories
policies based
on fidelity
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Insights

Configurations Policy 1: Which path is preferred?
C->B<<C->D->B

Multilayer graph with NETWORK
vector of edge weights MODEL

°

&

Categories

policies based
on fidelity C>B  :ospfcost=1
C—>D-B : ospf cost =6
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Insights

Configurations Policy 1: Which path is preferred?
C->B<<C->D->B

Multilayer graph with NETWORK
vector of edge weights MODEL

°

policies based FAIH
on fidelity SNERYIEEIO C>B  :ospfcost=1

Categories

C—>D-B : ospf cost =6
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Insights

Multilayer graph with
vector of edge weights

Categories
policies based
on fidelity

°

PATH
ENUMERATION

Configurations

NETWORK
MODEL

&

Policy 2: Can Creach B with 1
link failure?
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Insights

Multilayer graph with
vector of edge weights

Categories
policies based
on fidelity

°

PATH
ENUMERATION

Configurations

NETWORK
MODEL

&

Policy 2: Can Creach B with 1
link failure?
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Insights

Configurations Policy 2: Can C reach B with 1
link failure?

Multilayer graph with NETWORK
vector of edge weights MODEL

Categories

olicies based PAS
policies ENUMERATION
on fidelity

&

Min-cut = 2
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Insights

Configurations

Multilayer graph with NETWORK
vector of edge weights MODEL

Categories

olicies based italln
policies ENUMERATION
on fidelity

&

QUANTITATIVE
GRAPH
PROPERTY

Policy 2: Can Creach B with 1
link failure?

Min-cut = 2
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Insights

Multilayer graph with
vector of edge weights

Categories
policies based
on fidelity

°

PATH
ENUMERATION

Configurations

NETWORK
MODEL

&

QUANTITATIVE
GRAPH
PROPERTY

Policy 3: Is C always
unreachable/blocked from B?
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Insights

Multilayer graph with
vector of edge weights

Categories
policies based
on fidelity

°

PATH
ENUMERATION

Configurations

NETWORK
MODEL

QUANTITATIVE
GRAPH
PROPERTY

Policy 3: Is C always

unreachable/blocked from B?

&

(CONNECTIVITY)

PATH
EXISTENCE
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Insights

Configurations

Insight 2: Different properties require different levels of
vulti| fidelity modeling of the control plane. Use property-specific
vecto| algorithm for performance benefits

Categories QUANTITATIVE PATH
olicies based PAS
P Cles ENUMERATION GRAPH EXISTENCE
on fidelity PROPERTY (CONNECTIVITY)
I : l
low performance high performance

high fidelity low fidelity
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Tiramisu Overview

Traffic Propagation Graph (TPG)

EE-_% Routing Adjacencies Graph (RAG)
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PATH
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Tiramisu Overview

PATH NUMERIC GRAPH
ENUMERATION PRC?RTY Algorithms
TPVP ILP

Traffic Propagation Graph (TPG)
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Tiramisu Overview

PATH NUMERIC GRAPH PATH
ENUMERATION PROPERTY EXISTENCE  Algorithms
TPVP ILP TDFS

Traffic Propagation Graph (TPG)

EE-_E Routing Adjacencies Graph (RAG)




Tiramisu Overview

Traffic Propagation Graph (TPG)

EE-_% Routing Adjacencies Graph (RAG)




Traffic Propagation Graph (TPG)
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Traffic Propagation Graph (TPG)

Boor Doar

* Vertices: RIB of a routing processes and ingress/egress point of a switch/router
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* Vertices: RIB of a routing processes and ingress/egress point of a switch/router

* Edges: establish route dependency and traffic flow
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Traffic Propagation Graph (TPG)

-8

v -
“

* Vertices: RIB of a routing processes and ingress/egress point of a switch/router

* Edges: establish route dependency and traffic flow
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1 <len:0> <len:0>
<len:1> v
-2 oo
<ospf:1> <ospf:1> <ospf:5> <ospf 5><ospf:1>

. I)Il

* Vertices: RIB of a routing processes and ingress/egress point of a switch/router
* Edges: establish route dependency and traffic flow
* Vector of edge weights: multiple route metrics
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Tiramisu Overview

PATH
ENUMERATION Algorithms

1

TPVP

Traffic Propagation Graph (TPG)

EE-_E Routing Adjacencies Graph (RAG)




TPVP - Tiramisu Path Vector Protocol

 Griffin et al. (TON’2002) and Sobrinho (TON’2005) models stable paths
problem as Simple Path Vector Protocol (SPVP) and routing algebra

* TPVP is derived from SPVP and is modeled on routing algebra

* P operator to model path cost computation
e < operator to model preference relation and path selection



TPVP - Tiramisu Path Vector Protocol

 Griffin et al. (TON’2002) and Sobrinho (TON’2005) models stable paths
problem as Simple Path Vector Protocol (SPVP) and routing algebra

* TPVP is derived from SPVP and is modeled on routing algebra

* P operator to model path cost computation
e < operator to model preference relation and path selection
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Cbgp —<len:0>—— Cospf «
i 0 <ospf:1>

N



TPVP - Tiramisu Path Vector Protocol

 Griffin et al. (TON’2002) and Sobrinho (TON’2005) models stable paths
problem as Simple Path Vector Protocol (SPVP) and routing algebra

* TPVP is derived from SPVP and is modeled on routing algebra

* P operator to model path cost computation
* < operator to model preference relation and path selection

I {ospf:5} INode D <
- Cospf {ospf:1} @ospr {0spf:5} {ospf:6} < oepf {}
<ospf:1> = {ospf:6}
Cogp + <len:0> — Cogr «
A {ospf:6) <ospf:1>

N



TPVP - Tiramisu Path Vector Protocol

 Griffin et al. (TON’2002) and Sobrinho (TON’2005) models stable paths
problem as Simple Path Vector Protocol (SPVP) and routing algebra

* TPVP is derived from SPVP and is modeled on routing algebra

* P operator to model path cost computation
* < operator to model preference relation and path selection

Node (%)) <
~ Coner {ospf:1} Dospr {0spf:l} | {ospf:2} < 50 {0Spf:6}
<ospf:1> = {ospf:2}
Cogp + <len:0> — Cogr «
{} {OSpf:Z} <OSpf:1>

I {ospf:1} I




TPVP - Tiramisu Path Vector Protocol

 Griffin et al. (TON’2002) and Sobrinho (TON’2005) models stable paths
problem as Simple Path Vector Protocol (SPVP) and routing algebra

* TPVP is derived from SPVP and is modeled on routing algebra

* P operator to model path cost computation
* < operator to model preference relation and path selection

Node s <
7 Cogp {len:0} Dpg, {0spf:1} {len:0, ospf:2} < pgp {}
Coep ~ <len:0> —I {ospf:2} I (<OSpf:1> = {len:0, ospf: 2}
{len:0, ospf:2} {ospf:2} <ospf:1>

N



TPVP - Tiramisu Path Vector Protocol

 Griffin et al. (TON’2002) and Sobrinho (TON’2005) models stable paths
problem as Simple Path Vector Protocol (SPVP) and routing algebra

* TPVP is derived from SPVP and is modeled on routing algebra

* P operator to model path cost computation
* < operator to model preference relation and path selection

| {0spf:5} INode D <
_ Cospf {ospf:1} Bospr {0spf:5} {ospf:6}xospf {ospf:2}
<ospf:1> = {ospf: 6}
Cbgp —<len:0>—— Cospf ¢«
{len:0, ospf:2} {ospf:2} <ospf:1>

N



TPVP - Tiramisu Path Vector Protocol

65



TPVP - Tiramisu Path Vector Protocol

P1l: C->D->B : ospf cost =2
P2: C->B : ospf cost =4
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TPVP - Tiramisu Path Vector Protocol

|P1: C->D-B : ospf cost =2 |
P2: C->B : ospf cost =4
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TPVP - Tiramisu Path Vector Protocol

P1l: C->D->B : ospf cost =2

[P2: C>B  :ospfcost=4 |
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TPVP - Tiramisu Path Vector Protocol

P1l: C->D->B : ospf cost =2

[P2: C>B  :ospfcost=4 |
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TPVP - Tiramisu Path Vector Protocol

* To verify path preference (P1 << P2), Tiramisu multiple instances of TPVP for
different failure scenarios

e Runs TPVP three times

P1l: C->D->B : ospf cost =2

[P2: C>B  :ospfcost=4 |

70



Tiramisu Overview

NUMERIC GRAPH
PROPERTY Algorithms

1

ILP

Traffic Propagation Graph (TPG)

EE-_E Routing Adjacencies Graph (RAG)




ILPs - Integer Linear Programs

* Traffic flows in the direction opposite to route advertisement
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ILPs - Integer Linear Programs

min cutis 1

* Traffic flows in the direction opposite to route advertisement
* Only depends on quantitative path property and not exact path
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ILPs - Integer Linear Programs

min cutis 1

* Traffic flows in the direction opposite to route advertisement
* Only depends on quantitative path property and not exact path

* ILP constraints model reachability
* Tag/Community
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ILPs - Integer Linear Programs

S
[ Longest path = Maximize path length ]

* Traffic flows in the direction opposite to route advertisement
* Only depends on quantitative path property and not exact path

* ILP constraints model reachability
* Tag/Community

* Objective models the graph property
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ILPs - Integer Linear Programs

S
[ Longest path = Maximize path length ]

* Traffic flows in the direction opposite to route advertisement
* Only depends on quantitative path property and not exact path

* ILP constraints model reachability
* Tag/Community

* Objective models the graph property

* More details about the ILP and its corner cases are in the paper 76



Tiramisu Overview

PATH
EXISTENCE  Algorithms

|

TDFS

Traffic Propagation Graph (TPG)

EE-_E Routing Adjacencies Graph (RAG)




TDFS — Tiramisu Depth First Search

e Can’t use vanilla graph algorithms to model tags
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TDFS — Tiramisu Depth First Search

e Can’t use vanilla graph algorithms to model tags

* Conditions
* Block path: tag-blocking node = tag-adding node
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TDFS — Tiramisu Depth First Search

e Can’t use vanilla graph algorithms to model tags

* Conditions
* Block path: tag-blocking node = tag-adding node
* Allow path: tag-blocking node > tag-removing node = tag-adding node
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TDFS — Tiramisu Depth First Search

Vo~
~
~
~
~
~
~
~
~,
~
~

[Verify if src and dst are always unreachable]

e Can’t use vanilla graph algorithms to model tags

* Conditions
* Block path: tag-blocking node = tag-adding node
* Allow path: tag-blocking node > tag-removing node = tag-adding node
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Tiramisu Overview

PATH NUMERIC GRAPH PATH
ENUMERATION PROPERTY EXISTENCE  Algorithms
TPVP ILP TDFS

Traffic Propagation Graph (TPG)

EE-_E Routing Adjacencies Graph (RAG)




Evaluation

 Networks used
e Real networks: 4 universities and 34 datacenters

* Evaluation
* Tiramisu verification performance
* Comparison with other state-of-the-art

Policy Name Algorithm
block Always blocked TDFS
bound Always bounded length ILP

pref Path preference TPVP



Evaluation — Tiramisu’s Performance

80
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University
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 bound is slowest because it uses ILP
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Evaluation — Tiramisu’s Performance

80
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i—:,

q)40
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[

Unil (9) Uni2 (24) Uni3 (26) Uni4d (35)
University

W pref W bound M block
 bound is slowest because it uses ILP
e block is fastest because it uses TDFS
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Evaluation — Tiramisu’s Performance

80
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mpref ®bound m block
* bound is slowest because it uses ILP
* block is fastest because it uses TDFS
 pref is slower than block as TPVP is more complex
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Evaluation — Tiramisu’s Performance

80

- 60

£

o 40

&

-l |

0 [ |
Unil (9) Uni2 (24) Uni3 (26) Uni4d (35)
University

mpref mbound W block
* bound is slowest because it uses ILP
* block is fastest because it uses TDFS
 pref is slower than block as TPVP is more complex

* For large networks, pref is as long as bound
 Large networks = More candidate and longer paths - More calls to TPVP
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Evaluation: Tiramisu vs. Minesweeper (No failures)

pref bound block
40 30 PY
® o o -
_g— 30 o 8 4o 3 2 " %90 o '.0 o ..“Q
g s % o 3 o o 3 .
S o 10 @ 50 :
& 10 o0 & ® & oo®
0 0 0 o
0 5 10 15 20 25 0 10 20 30 0 10 20 30
Network Size Network Size Network Size

* block has the most speedup
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Evaluation: Tiramisu vs. Minesweeper (No failures)

pref bound block
40 30 150 P
® °
o o o
_g 30 o . N _g 20 f ‘“ () ’.’ _g 100 [ b
g 20 s % S o S ot
Q 10 Q o
n n ® N oo® o
0 0 0
0 5 10 15 20 25 0 10 20 30 0 10 20 30
Network Size Network Size Network Size

* block has the most speedup

 pref has the least speedup (especially for l[arge networks)
* Large networks = more and longer candidate paths = more calls to TPVP
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Evaluation: Tiramisu vs. Minesweeper (All failures)

pref bound block
A o W g &
é{ 20 e 3 s ¢o0 %20 ."‘ & 200 .* ¢
0 0 %00 o @ o S 00 o o
0 5 10 15 20 25 0 10 20 30 0 10 20 30
Network Size Network Size Network Size

e Same trend but significantly better speed up
* Minesweeper uses same encoding for all policies
* Tiramisu uses property specific algorithms

90



Summary

* Tiramisu decouples encoding of the network from verification algorithms
* Tiramisu uses a multilayer graph control plane model

* Tiramisu uses
* TPVP to enumerate paths
* |LP to measure quantitative graph property
* TDFS to check path existence

* Tiramisu achieves good performance without losing too much coverage
* No external advertisements



