
Programmable Calendar Queues for
High-speed Packet Scheduling

Naveen Kr. Sharma1, Chenxingyu Zhao1, Ming Liu1, Pravein G Kannan2,

Changhoon Kim3, Arvind Krishnamurthy1 and Anirudh Sivaraman4

Packet Scheduling

• Many scheduling algorithms require ordering packet at switches

• Enables rich application guarantees such as WFQ, EDF or SRPT

• Generally implemented using a priority queue with static priorities

• Packet’s priority (rank) is computed by the ingress pipeline

• The priority does not change until the packet is transmitted

• However, static priorities are insufficient for several algorithms

Static Priority Limitations

Least Slack Time First

• Each packet has slack denoting time until delivery

• Enqueue packet with rank = current_time + slack

• Ranks increase over time, eventually exhausting priorities

• Other algorithms, WFQ, EDF, LBF have this property as well

0

1

2

3

4

5

N

Priority
Levels

• Need a mechanism that supports “dynamic priorities”

• Implementable at high-speeds (preferably a bolt-on)

1T = 0

2T = 1

1T = 3

3

5

Calendar Queues (CQs)

• Proposed by Brown’88 for processing events in discrete event simulator

• Bucketed priority queue with O(1) insert and deletes

• Analogous to a desk calendar, consisting of multiple days

• Events are scheduled by specifying a future day

• Dequeued from the current day in sorted order

• Once events are exhausted for a day, move onto next day – priority escalation

• Make the previous day available to reuse at lowest priority – priority reuse

Our Contribution: Programmable Calendar Queues

Combine calendar queues abstraction with programmable pipelines

to realize scheduling algorithms at line-rate on today’s hardware

• Calendar Queues provide dynamic priorities

• Programmable pipelines maintain scheduling algorithm state

Outline

• Background

• Programmable Calendar Queue (PCQs)

• Realizing scheduling algorithms on PCQs

• Implementing PCQs in hardware

• Case Study : Coflow Scheduling

• Case Study : Weighted Fair Queuing

Reconfigurable Switches

Traffic Manager (TM)Ingress Pipeline Egress Pipeline

Multiple FIFO queues

• Packets processed by ingress pipeline before being buffered in the TM

• Multiple queues attached to an egress port, configured using the switch CPU

• Queues scheduled using priority or round robin, with support for pausing

• Calendar Queue with programmable and stateful rank computation

• Customizable and configurable day duration and rotation policy

• Each day is mapped to a FIFO queue

• Packet ranks are bucketed into days

• Earliest day has highest deque priority

• Move to next day periodically

• Reuse the queue for future day

Programmable Calendar Queues (PCQs)

Day 1

Day 2

Day 3 ...

Day N

Day N+1

52 01

10 1518

25

[0, 10)

[10, 20)

[20, 30)

Deque
Order

FIFO queues

Realizing Algorithms using PCQs

• Calculate which day to enqueue arriving packets – Rank Compute

• How far into the future to schedule the packet

• Decide when to move onto next day – Queue Rotation

• When the current queue is empty – Logical Calendar Queue

• Periodically based on wall clock time – Physical Calendar Queue

• Update algorithm state and enqueing behavior – State Update

• Ensures algorithm invariants are maintained on rotation

Example using PCQs: Fair Queueing

• Emulate bit-by-bit round robin fair queueing

• Each round corresponds to a day in the CQ

• Rank Computation
• Rank = bytes sent by flow / round size

• Queue Rotation
• Whenever the current queue is empty

• State Update
• Increment round number by 1

Flow 1

Flow 2

Flow K

Ideal per-flow queues

A

B

D

C

3 2 1 0

AD

BC

Day 1

Day 2

Day N

Calendar Queues

...
...

}

Round
Size

5 0

10 15

25

• Bucket packet deadlines into queues based on day duration

• Keep track of drift to maintain correct dequeue order

• Rank Computation
• Rank = deadline + drift / bucket size

• Rotation
• Current queue is empty

• State Update
• Adjust drift based on time spent

Example using PCQs: Earliest Deadline First

Day 1

Day 2

Day 3

...

Day N

[0us, 10us)

[10us, 20us)

[20us, 30us)

Calendar Queues

[-5us, 5us)

[15us, 25us)

Implementing PCQs in hardware

• Mutable switch state and recirculation of special packets

• Ability to change queue priority and status

Traffic Manager Egress PipelineIngress Pipeline

headQ = 1

tailQ = N

headQ = 1/ 2/ 2

/ 1

Marker
Packet

Day 1

Day 2

Day 3

Day N

Hi

Lo

Day N+1

P

P

P

Hardware Feasibility

• Most efficient implementation requires data plane support for

modifying queue priority and status

• Expected in next generation of programmable switches

• Limited version already available for PFC mechanism

• Less responsive version can be realized using control plane

• Our prototype uses switch CPU to update queue priorities

More details in the paper

• Approximations in PCQs

• Hierarchical Calendar Queues

• Expressiveness and Limitations of PCQs

• Hardware Prototype Results

Case Study: Coflow Scheduling

• Many applications optimize the performance of collection of flows

• Ordering coflows smallest to largest gives close to optimal results

• We implement such a scheme using LSTF scheduling on PCQs

• Slack is set to the expected finish time of the largest sub-flow

• At any hop, packet with the shortest slack is sent out first

Coflow Testbed Setup

• 3-level fat-tree testbed with coflow and background traffic

• Each switch port implements a PCQ with 32 FIFO queues

• Compared with DCTCP over droptail and fair-queueing

• Measure and report the Coflow Completion Time (CCT)

Coflow Scheduling Evaluation

0

400

800

1200

10 20 30 40 50 60 70 80 90

Network Load (%)

Average CCT

0

1000

2000

3000

10 20 30 40 50 60 70 80 90

Network Load (%)

99th %tile CCT

Droptail

Fair Queue

Ideal SRPT

SRPT w CQs

CCT
in
μs

Case Study: Burst-friendly Fair Queueing

• Emulate a bit-by-bit round robin scheme at coarse granularity

• Desirable to permit a burst of packets for better tail latency

• Sacrifices fairness at short timescales but maintains it at long timescale

Ideal Fair Queueing

Bursty Fair Queueing

1 2 3 4 5 6 7 8 9Round Number

Burst-friendly Fair Queueing Evaluation

0

40

80

120

160

10 20 30 40 50 60 70 80 90

Network Load (%)

99.9th %tile FCT for short flows

Ideal FQ

FQ w/ CQs

Bursty FQ 8

Bursty FQ 16

0

15

30

45

60

10 20 30 40 50 60 70 80 90

Network Load (%)

Average Coflow Completion Time

FCT
in
μs

Summary

• Static priority mechanisms insufficient for class of scheduling algorithms

• Calendar Queue based approach is a better fit

• Can be implemented on today’s multi-pipeline, high speed switches

• Inherently scalable to higher bandwidth and number of flows

• With a programmable pipeline, can implement a variety of algorithms

