KnowledgeNet: Disaggregated and Distributed Training and Serving of Deep Neural Networks

Saman Biookaghazadeh, Yitao Chen, Kaiqi Zhao, Ming Zhao

Arizona State University

http://visa.lab.asu.edu

Background

- Deep neural networks (DNNs) haven shown great potential
 - Solving many challenging problems
 - Relying on large systems to learn on big data
- Limitations of centralized learning

Cannot scale to handle future demands

"20 billion connected devices by 2020"

Real-time learning/decision making

 Cannot exploit the capabilities of the increasingly powerful edge

Multiprocessing, accelerators

Objectives

- Distributed learning across heterogeneous resources
 - Including diverse and potentially weak resources
 - Across edge devices and cloud resources
- Limitations of existing solutions
 - Data parallelism does not work for heterogeneous resources
 - Conventional backpropagation based training makes model parallelism difficult
 - Edge devices cannot train large models
 - Model compression works only for inference, not training

Proposed approach

- Using synthetic gradients to achieve model parallelism
 - Split a large DNN model into many small models
 - Deploy small models on distributed and potentially weak resources
 - Use synthetic gradients to decouple the training of the small models

Conventional training

- To training a neural network model
 - forward path: calculate loss of the class prediction
 - backward path: calculate the gradients of loss w.r.t the parameters

- h(i): layer output of the *i*th layer
- $\delta(i)$: error of the *i*th layer

- Need tens of thousands iterations to achieve a high accuracy
- Layers are coupled and training are sequential
- Limited scalability in training

Training with synthetic gradients

h(i): layer output of the ith layer

 $\delta(i)$: error of the *i*th layer

Decouple the layers

- Use synthetic gradients to train the small model instead of waiting for the actual gradients from backpropagation

Proposed approach

- Using knowledge transfer to improve training on weak resources
 - Train a large, teacher model in the cloud
 - Train many small, student models on the devices
 - Exploit the knowledge of the teacher to train the students
 - Improve the accuracy and convergence speed of the students

Knowledge transfer

Preliminary results

- Using synthetic gradients to achieve model parallelism
 - Model: a simple 4-Layer
 - One convolution layer and three fully-connected
 - MNIST Dataset
 - 500K Iteration of training

Training accuracy

	Back propagation	Synthetic gradients
4-layer model	0.984	0.977
8-layer model	0.992	0.924
VGG16	0.994	0.845

Preliminary results

- Using knowledge transfer to improve training on weak resources
 - Teacher Model: VGG-16 (8.5M parameters)
 - Student Model: miniaturized VGG-16 (3.2M parameters)
 - Training student for 100 Epochs

	Accuracy
Teacher	76.88%
Student (dependent)	74.12%
Student (independent)	61.24%

[&]quot;Are Existing Knowledge Transfer Techniques Effective For Deep Learning on Edge Devices?" R. Sharma, S. Biookaghazadeh, and M. Zhao, EDGE, 2018

Conclusions and future work

- Rethink DNN platforms to handle future learning needs
 - Utilize heterogeneous resources to train DNNs
 - Distribute learning across edge and cloud
- Achieve efficient model parallelism
 - Use synthetic gradients to decouple the training of distributed models
 - Need to further improve its accuracy for complex models
- Overcome the resource constraints of edge devices
 - Use knowledge transfer to help train on-device models
 - Need to further study its effectiveness under scenarios with limited data and limited supervision

Acknowledgement

- National Science Foundation
 - GEARS project: CNS-1629888
 - CNS-1619653, CNS-1562837, CNS-1629888, CMMI-1610282, IIS-1633381

- Saman, Yitao, Kaiqi, and others
- Thank you!
 - Questions and suggestions?
 - Come to our poster at Happy Hour!

