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Background

e Deep neural networks (DNNs) haven shown great potential
o Solving many challenging problems
o Relying on large systems to learn on big data

¢ Limitations of centralized learning

o Cannot scale to handle future demands m Q
« “20 billion connected devices by 2020”
« Real-time learning/decision making

o Cannot exploit the capabilities of
the increasingly powerful edge .

* Multiprocessing, accelerators
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Objectives

e Distributed learning across heterogeneous resources
o Including diverse and potentially weak resources
o Across edge devices and cloud resources

e Limitations of existing solutions

o Data parallelism does not work ,
for heterogeneous resources m ©)

o Conventional backpropagation
based training makes model
parallelism difficult

o Edge devices cannot train
large models

o Model compression works only
for inference, not training
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Proposed approach

e Using synthetic gradients to achieve model parallelism
o Split a large DNN model into many small models

o Deploy small models on distributed and potentially weak resources

o Use synthetic gradients to decouple the training of the small
models
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Conventional training

e To training a neural network model

o forward path: calculate loss of the class prediction
backward path: calculate the gradients of loss w.r.t the parameters

Forward path

— Prediction
Y e Need tens of thousands
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iterations to achieve a
high accuracy
e Layers are coupled and
training are sequential
e Limited scalability in
training
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Training with synthetic gradients

h(i): layer output of the ith layer

0(i): error of the ith layer Decouple the layers
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Minimize || 5(4_1) - 5(4_1) | M4

e Use another small neural network to predict the error
—>synthetic gradients

e Use synthetic gradients to train the small model instead of waiting for the actual
gradients from backpropagation
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Proposed approach

e Using knowledge transfer to f""T'e';c}};r""if ----------------------------- 5
improve training on weak ’ ’
resources

o Train a large, teacher model in
the cloud

o Train many small, student
models on the devices

o Exploit the knowledge of the
teacher to train the students

o Improve the accuracy and
convergence speed of the
students
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Knowledge transfer
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Preliminary results

e Using synthetic gradients to

achieve model parallelism

o Model: a simple 4-Layer

* One convolution layer and
three fully-connected

o MNIST Dataset
o 500K Iteration of training

1.1

Training accuracy

Back Synthetic
propagation gradients
4-layer 0.984 0.977
model
8-layer 0.992 0.924
model
VGG16 0.994 0.845
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Preliminary results

e Using knowledge transfer to improve training on weak
resources
o Teacher Model: VGG-16 (8.5M parameters)
o Student Model: miniaturized VGG-16 (3.2M parameters)
o Training student for 100 Epochs

Accuracy
Teacher 76.88%
Student (dependent) 74.12%
Student (independent) 61.24%

“Are Existing Knowledge Transfer Techniques Effective For Deep Learning on Edge Devices?”
R. Sharma, S. Biookaghazadeh, and M. Zhao, EDGE, 2018
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Conclusions and future work

e Rethink DNN platforms to handle future learning needs
o Utilize heterogeneous resources to train DNNs
o Distribute learning across edge and cloud

e Achieve efficient model parallelism

o Use synthetic gradients to decouple the training of distributed
models

o Need to further improve its accuracy for complex models

e Overcome the resource constraints of edge devices
o Use knowledge transfer to help train on-device models

o Need to further study its effectiveness under scenarios with
limited data and limited supervision
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¢ Thank you!
o Questions and suggestions?

o Come to our poster at Happy
Hour!
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