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Background

� Deep neural networks (DNNs) haven shown great potential
o Solving many challenging problems
o Relying on large systems to learn on big data

� Limitations of centralized learning
o Cannot scale to handle future demands

• “20 billion connected devices by 2020”

• Real-time learning/decision making

o Cannot exploit the capabilities of
the increasingly powerful edge
• Multiprocessing, accelerators
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Objectives

� Distributed learning across heterogeneous resources
o Including diverse and potentially weak resources
o Across edge devices and cloud resources

� Limitations of existing solutions
o Data parallelism does not work

for heterogeneous resources
o Conventional backpropagation

based training makes model
parallelism difficult

o Edge devices cannot train 
large models

o Model compression works only
for inference, not training
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Proposed approach

� Using synthetic gradients to achieve model parallelism
o Split a large DNN model into many small models
o Deploy small models on distributed and potentially weak resources
o Use synthetic gradients to decouple the training of the small 

models
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Forward path  

Backward path

● To training a neural network model 
○ forward path: calculate loss of the class prediction
○ backward path: calculate the gradients of loss w.r.t the parameters

● Need tens of thousands 
iterations to achieve a 
high accuracy

● Layers are coupled and 
training are sequential

● Limited scalability in 
training 
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Training with synthetic gradients
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● Use another small neural network to predict the error
àsynthetic gradients

● Use synthetic gradients to train the small model instead of waiting for the actual 
gradients from backpropagation
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Proposed approach

� Using knowledge transfer to 
improve training on weak 
resources
o Train a large, teacher model in 

the cloud
o Train many small, student 

models on the devices
o Exploit the knowledge of the 

teacher to train the students
o Improve the accuracy and 

convergence speed of the 
students
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Knowledge transfer
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Preliminary results

� Using synthetic gradients to 
achieve model parallelism
o Model: a simple 4-Layer

• One convolution layer and 
three fully-connected

o MNIST Dataset
o 500K Iteration of training
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Back
propagation

Synthetic 
gradients

4-layer 
model

0.984 0.977

8-layer 
model

0.992 0.924

VGG16 0.994 0.845
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Preliminary results

� Using knowledge transfer to improve training on weak 
resources
o Teacher Model: VGG-16 (8.5M parameters)
o Student Model: miniaturized VGG-16 (3.2M parameters)
o Training student for 100 Epochs
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Accuracy

Teacher 76.88%

Student (dependent) 74.12%

Student (independent) 61.24%

“Are Existing Knowledge Transfer Techniques Effective For Deep Learning on Edge Devices?” 
R. Sharma, S. Biookaghazadeh, and M. Zhao, EDGE, 2018



Conclusions and future work

� Rethink DNN platforms to handle future learning needs
o Utilize heterogeneous resources to train DNNs
o Distribute learning across edge and cloud

� Achieve efficient model parallelism
o Use synthetic gradients to decouple the training of distributed 

models
o Need to further improve its accuracy for complex models

� Overcome the resource constraints of edge devices
o Use knowledge transfer to help train on-device models
o Need to further study its effectiveness under scenarios with 

limited data and limited supervision
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� Thank you!
o Questions and suggestions?
o Come to our poster at Happy 

Hour!
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