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Agenda
● Background: TensorFlow and YARN
● What is TonY?
● Why use TonY for distributed training?
● Next steps
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Machine Learning process

• Productionizing machine learning 
requires many steps

• The focus of this talk will be model 
training
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Data Ingestion

Data Preparation

Model Training

Model Deployment

Model Serving



Background
What is TensorFlow?
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Background
What is TensorFlow?

Visualisation with TensorBoard
https://learningtensorflow.com/Visualisation/
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Background
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What is distributed TensorFlow?



How to run distributed TensorFlow?
● Distribute code/data artifacts across multiple machines in distributed job
● Allow tasks in the same distributed job to talk to each other (e.g. tell each 

worker where all other worker/parameter servers are)
● Ensure your task compute requirements are met before starting 

distributed job
● Or, have a framework do all of the above for you (Hadoop!)
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Background
What is Hadoop?
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Background
What is Hadoop?
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Distributed File System



Background
What is Hadoop?
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Distributed File System

Yet Another 
Resource 
Negotiator



Background
How to work with YARN?
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Background
How to work with YARN? 
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Background
How to work with YARN? 
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What is TonY?
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What is TonY?
● Orchestrates running distributed TensorFlow on Hadoop
● Acquires compute resources from Hadoop (memory, CPU, GPU)
● Sets up and launches distributed TensorFlow jobs on Hadoop clusters
● Manages application 

lifecycle
○ Fault tolerance

○ Job monitoring
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TonY Architecture
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TonY Architecture
● Entry point for TonY jobs
● Package user’s configurations, user’s 

model code and submit as YARN 
application
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TonY Architecture
● Job setup and lifecycle 

management
● Negotiates compute resources 

from Hadoop
● Sets up container environment
● Launches and monitors containers
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TonY Architecture
● Container = Task Executor
● Launches user’s provided python 

script
● Heartbeats to Application Master 

for liveness
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Why use TonY for distributed training?
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Scaling distributed TensorFlow on Hadoop
● Leverage YARN’s fine-grained resource management and multi-tenancy

○ Logical resource isolation via queues
○ Hardware-based physical resource partitioning (CPU, K80, V100)
○ User-based resource limits
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Scaling distributed TensorFlow on Hadoop
● Native GPU resource awareness
● Ensures GPU resource isolation and scheduling
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Scaling distributed TensorFlow on Hadoop
● One-click TensorBoard access for monitoring training progress
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Scaling distributed TensorFlow on Hadoop
● Fault tolerance
● More workers = more failures
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Scaling distributed TensorFlow on Hadoop
● Fault tolerance
● More workers = more failures
● First attempt periodically saves model checkpoints to HDFS
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Scaling distributed TensorFlow on Hadoop
● Fault tolerance
● More workers = more failures
● First attempt periodically saves model checkpoints to HDFS
● Worker failure -> tear down and restart application
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Scaling distributed TensorFlow on Hadoop
● Fault tolerance
● More workers = more failures
● First attempt periodically saves model checkpoints to HDFS
● Worker failure -> tear down and restart application
● Read checkpoints from HDFS, resume from where previous attempt 

left off
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Open Sourced!
● https://github.com/linkedin/TonY
● Engineering blog post: https://bit.ly/2O6L5WD 

Contributions Welcome!
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https://github.com/linkedin/TonY
https://bit.ly/2O6L5WD


Next steps
● Dr. Elephant integration
● TonY portal for notebook, job history, cross-execution monitoring
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Q & A
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