
TonY: An Orchestrator for Distributed Machine 
Learning Jobs

1



Agenda
● Background: TensorFlow and YARN
● What is TonY?
● Why use TonY for distributed training?
● Next steps

2



Machine Learning process

• Productionizing machine learning 
requires many steps

• The focus of this talk will be model 
training

3

Data Ingestion

Data Preparation

Model Training

Model Deployment

Model Serving



Background
What is TensorFlow?

4



Background
What is TensorFlow?

Visualisation with TensorBoard
https://learningtensorflow.com/Visualisation/

5



Background

Worker 
task

Worker 
task

Worker 
task

Parameter 
server task

Parameter 
server task

Worker + Parameter Server Model

Worker 
task

Worker 
task

Worker 
task

Worker 
task

Ring All-Reduce Model

What is distributed TensorFlow?



How to run distributed TensorFlow?
● Distribute code/data artifacts across multiple machines in distributed job
● Allow tasks in the same distributed job to talk to each other (e.g. tell each 

worker where all other worker/parameter servers are)
● Ensure your task compute requirements are met before starting 

distributed job
● Or, have a framework do all of the above for you (Hadoop!)

7



Background
What is Hadoop?

8



Background
What is Hadoop?

9

Distributed File System



Background
What is Hadoop?

10

Distributed File System

Yet Another 
Resource 
Negotiator



Background
How to work with YARN?

11



Background
How to work with YARN? 

12



Background
How to work with YARN? 

13



What is TonY?

14



What is TonY?
● Orchestrates running distributed TensorFlow on Hadoop
● Acquires compute resources from Hadoop (memory, CPU, GPU)
● Sets up and launches distributed TensorFlow jobs on Hadoop clusters
● Manages application 

lifecycle
○ Fault tolerance

○ Job monitoring

15



TonY Architecture

16



TonY Architecture
● Entry point for TonY jobs
● Package user’s configurations, user’s 

model code and submit as YARN 
application

17



TonY Architecture
● Job setup and lifecycle 

management
● Negotiates compute resources 

from Hadoop
● Sets up container environment
● Launches and monitors containers

18



TonY Architecture
● Container = Task Executor
● Launches user’s provided python 

script
● Heartbeats to Application Master 

for liveness

19



Why use TonY for distributed training?

20



Scaling distributed TensorFlow on Hadoop
● Leverage YARN’s fine-grained resource management and multi-tenancy

○ Logical resource isolation via queues
○ Hardware-based physical resource partitioning (CPU, K80, V100)
○ User-based resource limits

21



Scaling distributed TensorFlow on Hadoop
● Native GPU resource awareness
● Ensures GPU resource isolation and scheduling

22



Scaling distributed TensorFlow on Hadoop
● One-click TensorBoard access for monitoring training progress

23



Scaling distributed TensorFlow on Hadoop
● Fault tolerance
● More workers = more failures

24



Scaling distributed TensorFlow on Hadoop
● Fault tolerance
● More workers = more failures
● First attempt periodically saves model checkpoints to HDFS

25



Scaling distributed TensorFlow on Hadoop
● Fault tolerance
● More workers = more failures
● First attempt periodically saves model checkpoints to HDFS
● Worker failure -> tear down and restart application

26



Scaling distributed TensorFlow on Hadoop
● Fault tolerance
● More workers = more failures
● First attempt periodically saves model checkpoints to HDFS
● Worker failure -> tear down and restart application
● Read checkpoints from HDFS, resume from where previous attempt 

left off

27



Open Sourced!
● https://github.com/linkedin/TonY
● Engineering blog post: https://bit.ly/2O6L5WD 

Contributions Welcome!

28

https://github.com/linkedin/TonY
https://bit.ly/2O6L5WD


Next steps
● Dr. Elephant integration
● TonY portal for notebook, job history, cross-execution monitoring

29



Q & A

30


