
Predictive Caching@Scale

Vaishnav Janardhan

Adit Bhardwaj

A scalable ML caching at the Edge

2

Overview

Problem Introduction

Caching Algorithms

ML for Caching

Traffic prediction

PeSC

System design challenges

Conclusion and Future work

3

The Akamai Platform
Distributed caching at the Edge

• 50+ trillion bits per second
• 60+ million hits per second
• 95+ Exabytes delivered per

year
• 250M+ attacks defended per

day

…With Enormous ScaleA Global Platform…
• Over 240,000 servers
• In over 2,400 locations
• In over 1,600 networks
• In over 650 cities
• In 138 countries

4

Caching Algorithms
Limitation of classical caching Algorithms

• Classical/Online caching algorithm
• (LRU, LFU, S4LRU e.t.c.)
• Are cheap and effective for web-traffic
• Highly competitive in terms of cache effectiveness
• Widely applicable and needs no meta information.

0.1% cache
21% hit-rate

• Theoretically optimal Caching scheme, Bélády’s
• Uses future arrival time knowledge
• Optimal only for single sized object cache
• Can provide huge performance gains over online

schemes.

• Variable object sized optimal can provide 190%
mean and 133% median gains

5

Previous methods of ML for caching
- Object Popularity prediction
- Using Reinforcement learning
- We developed a variant of Bélády’s for our

PredictiveCaching.

ML for Caching
How to use ML for caching

- Mimicking Bélády’s we just need sequencing
- We don’t have to predict actual arrival times

but only quantized future arrival bins.
- Only need to predict if the object falls inside

or outside of the eviction boundary.

Furthest
in

Future
Object

Future
time

How Bélády’s OPT works Quantized Bélády’s

6

• Multi-tenancy leads to competing traffic
patterns overlapping at the Edge, making
predictions challenging.

Traffic prediction

• We use several informative properties of
content to differentiate these patterns:
• Content level: Owner, size, type etc.
• Machine level: Traffic throughput, traffic mix

ratio, timeofday..
• Network topology level: cache layer

hierarchy, geo location, end-user patterns.

• Feature tuning helps to distinguish unique
traffic patterns

Challenges in Predicting Internet Traffic

7

• Next arrival time Prediction → Regression problem
• Output range [0.001 msec - 2*24*60*60 secs]: Difficult

to reach optimal model parameters.
• Difficult to relate Regression loss to downstream

cache hit-rate losses.
• Approximation:

• Regression → Ordinal Multi-class classification via
quantization as sequencing is sufficient to mimic OPT.

• Easier to relate mis-classification rate to cache hit-rate
performance.

• Can leverage TopK predictions in caching policy.

Traffic Prediction
Simplifying the Predictions

(Order enforcing loss)
|i-j| ↑ ⇒ W_ij ↑

8

• Requirements:
• Outperform LRU-based policy in an online situation.
• Robust enough to use unreliable predictions with varying confidence.

• Strategy:
• Isolate the prediction errors into separate segments of controlled size.
• Use next most likely predictions from topK predictions to make eviction decisions.

Prediction-Error Segmented Cache (PeSC)
A caching to recover from Prediction errors

9

• We compare the performance of
PeSC we trace the cache hit gap
between OPT, LRU and LFU. And
the of % cache hit gap recovered by
PeSC.

• We turn on the PeSC on several
regions and plot the Cache hitrate
for 4 schemes.

• 10%-60% of the gap recovered by
PeSC depending on the
traffic/Region.

Performance of PeSC
Predictive Caching closing the gap on LRU

10

• Challenges:
• Proxy servers were not designed to connect cacheability,

load-balancing and user-attributes for ML training.
• Edge machines don’t have spare capacity to generate ML

training sets.
• Multi-tenancy leads to missing/corrupt/default data can lead

to silent failures in the ML pipeline.

• Solutions:
• Re-write application modules to connect storage and web-

application tiers.
• Infer and log load-balancing attributes.
• Feature extraction and transformation modules were

changed to work under constrained resources.
• Deploy data validator: Range check on features, tracking

changing distribution of features, monitoring default value
imputations, etc.

PeSC System Design – Data Pipeline
Building a low overhead data pipeline at the Edge

11

PeSC System Design – Automation and Training

• Challenges:
• Training robust models for the multi-tenant Edge workload.
• Model should be adaptable for changing traffic and concept shift.
• On-the-fly model hyperparameter selection, capturing dataset silent

failures, etc.
• The large volume of training data and the frequence of re-training

the model.
• Solutions:

• Selecting less sensitive hyperparameters/model design, lr-
scheduling, cv-selection over multiple epochs.

• Continuous learning via partial retraining models on new available
data.

• Targeting most critical PoPs in the network.
• Pre-training models and loading weights from older models.
• Down-sampling datasets to reduce the size.
• Multiplexing GPU machine to handle multiple edge servers.
• Exploring FP16 training for faster training.

● > 2mil req/hour per
Edge

● Retraining ever few
hours with 3-7 day of
data.

Building a robust model for the Edge

12

• Challenges:
• Cost of Inference is extremely critical on

performance sensitive Edge servers.
• Inference cost should be comparable to sys-call

cost.
• No hardware accelerators are available at the

Edge. Traditional x86 machines.
• Missing features can lead to silent inference

failures.
• Solutions:

• Lazy-Batched Inference: Decouple content serving
and eviction policy logic.

• Do lazy inference on a batch of requests rather then
for each request which reduces amortized cost.

• Re-writing server application logic to collect and
scale features at inference time, which use to be
only available at the time of logging.

• Inference cost of batch size 256 is ~ 100 micro
sec.

PeSC System Design – Inference
A low-overhead inference at the Edge

Inference time per request

13

Conclusions and Future work

• Demonstrates there is a lot of value in re-thinking limitations of classical
algorithms

• We can safely build and use ML, deep inside a high performing web-server or
similar real-time applications

• Future work:
• Building a more general model that works across traffic patterns
• Reduce the cost of training
• Building predictive caching for variable object sizes

© 2019 Akamai14

