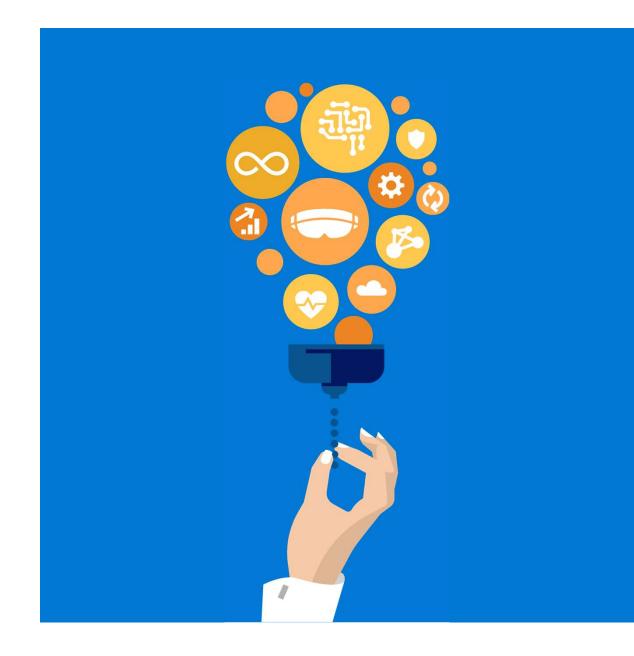


Deep Learning Vector Search Service

Jeffrey Zhu, Program Manager

OpML '19



Evolution of Search

Classic information retrieval is based on keyword matches and user behavior signals

- Query rewrite and other alteration techniques cannot enumerate all keyword expansions
- Insufficient user signals for tail queries

Novel search scenarios have emerged

 Natural language/Conversation, Question and Answer, image/multimedia

Vector search is a critical technique to improve search and enabling new scenarios

Traditional IR

User Behavior

Knowledge models, Inverted index

Deep Learning and Vectorization

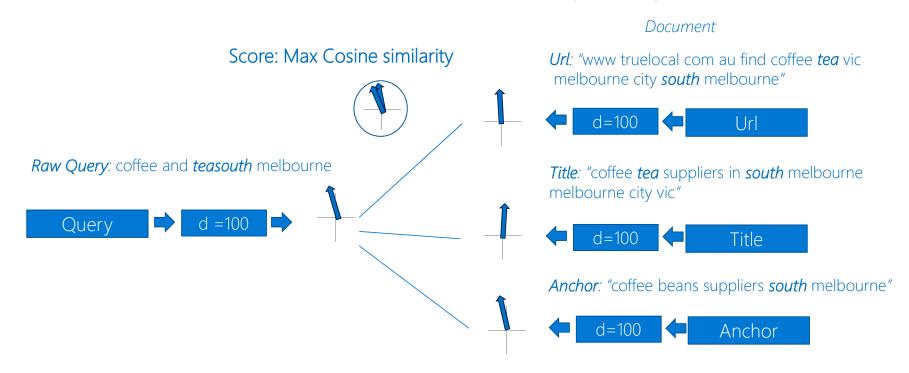
DL Based

Vectors and ANN

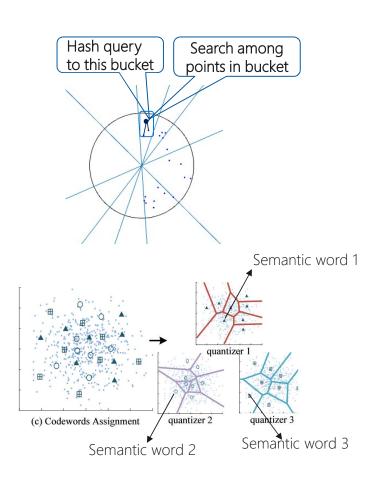
Content Vectorization

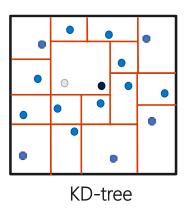
Use deep learning model to encode content as a vector

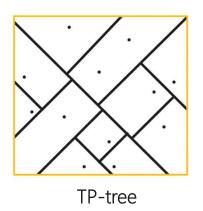
- · Distance between vectors represents semantic similarity
- · Better semantic representation, tolerant to out of vocabulary, spelling errors, connective words.

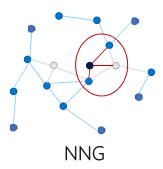


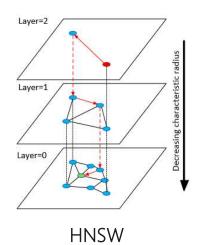
Vector Recall by Nearest Neighbor Search



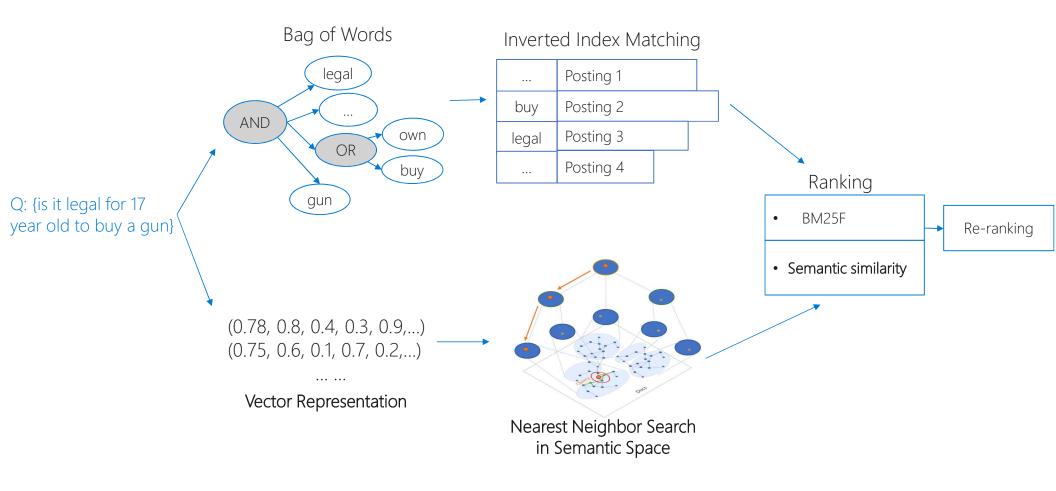








From Keyword to Semantic Vector Search



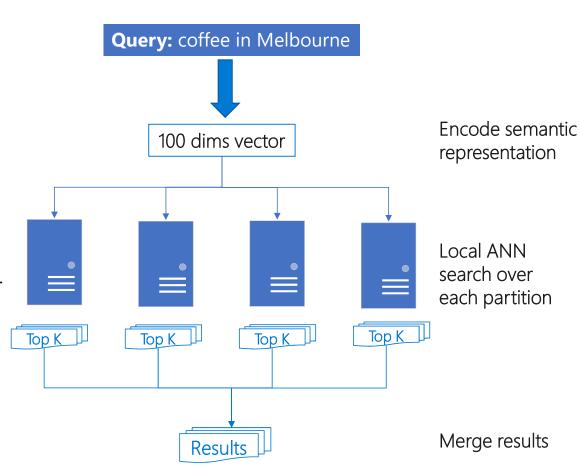
SpaceV: Semantic Vector Search at Scale

- Better fidelity (NCG@infinity) than keyword search + BM25F ranker with the same document sets
- · Additional fidelity gain after combining with keyword search

L1 Fidelity on full index	Overall	Tail
Keyword + Vector Search	+3.24	+5.14

Deep Learning Vector Search Service

- Platform Capabilities
 - · Performance: <10ms search latency
 - · Scale: 100B+ vector index size
 - · Agile: Fast experimentation + deploy
 - · Flexible: Pluggable ANN algorithms
- Distributed serving
 - Randomly partition vectors into smaller vector indexes
 - Serving queries is distributed and aggregated before returning



SpaceV: Semantic Vector Search at Scale

- High scale and Low latency
 - 40B+ vectors
 - Served with N (N=3) replica in 500+ servers
 - High capacity: 240M vectors per machines * 1,800 QPS at most
 - · Low latency: 5ms in average and 8ms in 95%ile

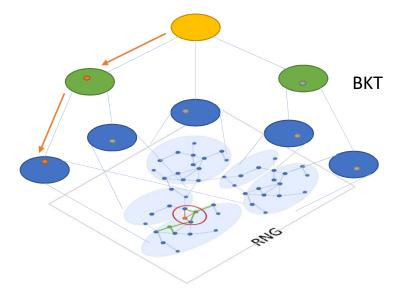
	QPS per replica	Avg latency (ms)	50% latency (ms)	95% latency (ms)
Normal Traffic	1,200	5.341	4.764	8.004
Peak Traffic	1,800	6.177	5.159	9.293

Key Innovations

- · SPTAG Approximate Nearest Neighbor Algorithm
 - · Balanced k-means tree over relative neighbor graph
- Distributed Vector Index Serving
 - · K-means clustering for distributed serving
- Lower Cost Serving Hardware
 - · Offload index from memory to Solid State Disk (SSD)

SPTAG – Space Partition Tree and Graph

- Hybrid approach to achieve high recall for both low and high dimension vectors
 - · BKT: Balanced K-means Tree
 - · RNG: Relative Neighbor Graph
- Designed for efficiency, scale, and agility
 - · Better trade-off between recall and latency
 - User customized distance
 - · Incremental update



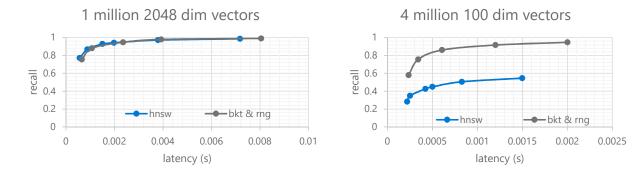
Balanced K-means Tree

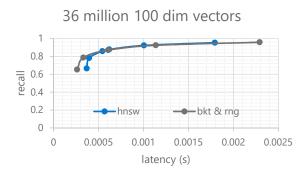
Object function: $\min_{H,C} ||X - HC||_{\mathrm{F}}^2 + \lambda ||\mathbf{1}^\top H||_2^2$

Cluster chosen: $k = \arg\min_{i} f(x_l, c_i) + \lambda s_i$

SPTAG – Space Partition Tree and Graph

- Evaluation
 - · Three datasets: 1M 2048 dim, 4M 100 dim, 36M 100 dim
 - · Two algorithms: HNSW, BKT & RNG

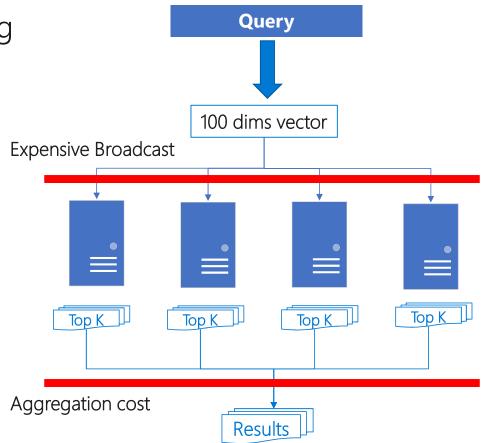




· Open source available at https://github.com/Microsoft/SPTAG

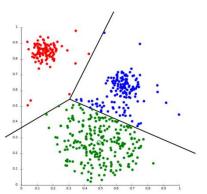
Distributed Vector Index Serving

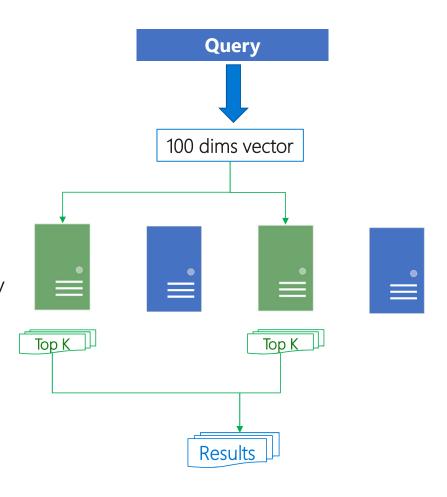
- · Challenges with Distributed Serving
 - Poor scalability
 - · Too much resource usage for each query
 - · Poor latency long tail



Distributed Vector Index Serving

- Data partitioning with balanced kmeans clustering
 - · Each data partition maps to specific cluster
 - Each query is only sent to closest clusters (instead of global broadcast)
- Evaluation
 - Selecting top 5 out of 22 clusters can get the same recall as baseline, and only use 23% capacity





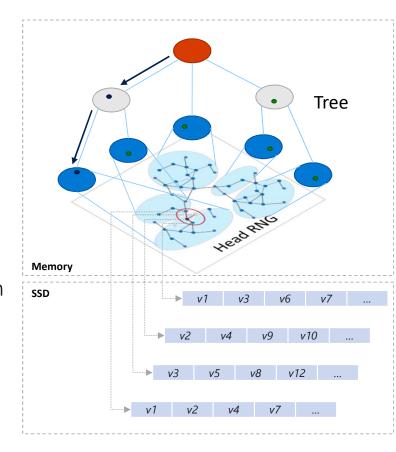
SSD Serving

Challenges

- · Memory is bottleneck to lower cost serving
- Memory cache hit rate is low due to ANN random access pattern

ANN algorithm for SSD

- Build head index from partial vector and serve in memory
- Cluster tail vectors with head vectors as a center and serve in SSD



SSD Serving

- Evaluation
 - · Dataset: 13 million 100 dim vectors
 - · 67% memory saving

	Index Size	Metadata Size	In Memory	In SSD
Memory Serving	32.3G	6.6G	32.3G	-
SSD Serving	47.5G	6.6G	6.6G	40.9G

	Average	99%	Recall
Memory Serving	1.05ms	1.32ms	0.962
SSD Serving	3.07ms	5.90ms	0.929

Takeaways

- Vector search is a critical technique to improve web search and power new capabilities such as question and answering, image search, etc.
- Key innovations in ANN algorithm and distributed vector index serving allows DLVS platform to serve high scale vector search scenarios (100B+ vectors)
- · Core ANN algorithm (SPTAG) is open source and available for developers to use
 - https://github.com/Microsoft/SPTAG