Auto Content Moderation in C2C e-Commerce

Shunya Ueta, Suganprabu Nagarajan, Mizuki Sango (Mercari, inc)

2020 USENIX Conference on Operational Machine Learning *JULY 27–AUGUST 7, 2020*

Contents

- 1. Content Moderation
- 2. Auto Content Moderation in C2C e-Commerce
- 3. Task design and model strategy
- 4. Offline/online evaluation
- 5. System architecture
- 6. Business Impact

Content Moderation

Identify potentially unsafe or inappropriate content in service

- <u>App Discovery with Google Play, Part 3: Machine Learning to Fight Spam and Abuse</u> <u>at Scale</u>
- YouTube Community Guidelines enforcement
- <u>Al advances to better detect hate speech</u> by Facebook
- Advances in content understanding, self-supervision to protect people by Facebook
- Facebook Transparency Report
- <u>A Safe and Secure Marketplace</u> by **Mercari**
- etc.

What is Mercari?

The Mercari app is a C2C marketplace where individuals can easily sell used items

Japan mercori U.S. MERCARI

Monthly active users: 16+ Million

Total number of items: 1.5+ Billion

Why Content Moderation in C2C e-Commerce?

We want to decrease risk for customer and marketplace

Sellers unintentionally violate policy. Buyers buy violated items without knowing

Policy case: counterfeits, weapons, etc.

Concept of Moderation Service: Rule based

Pros

• Easy to develop and can be quickly released to production

Cons

- Hard to manage
- Difficult to cover the inconsistencies in spellings
 e.g. {NIKE, nike, ないき, ナイキ}

Concept of Moderation Service: ML

Pros

- Automatically learns the features of items deleted by moderators
- Adapts to spelling inconsistencies

Cons

- Model update is hard
- Concept drift (a.k.a. training-serving skew)

8

How to create the data for ML

Task Design

ercari

Positive

- Data is highly imbalanced
- Each violated topic's total number of alerts is bounded by moderator team

All models trained as one-vs-all

- No side-effect when deploying a trained model to other class
- Hard to improve performance for each topic in a multi-class model

10

Multimodality of content

Items have multimodal data

- Image
- Text
- Category
- Brand
- Price, etc.

We use multimodal model to improve model performance. See our article:

https://tech.mercari.com/entry/2019/09/12/130000

Case of items

Model selection based on dataset size

- Gradient Boosted Decision Trees (GBDT)
 - → Efficient for training and inference when **training data size is not large**

*Image feature is not used in GBDT

- Gated Multimodal Unit (GMU)
 - Potentially most accurate using multimodal data

Offline evaluation

Metric is **Precision@***K*: *K* is the bound on the daily total number of alerts

in each violated topic **decided by Moderators**

Online evaluation

Classic A/B testing can take several months. It was difficult to collect enough transactions for t-test.

→ Faster decision making leads to efficient operation

Offline/online evaluation result

Baseline model is **Logistic regression** that was already released in production

Algorithms	Offline	Online
GBDT	+18.2%	Not Released
GMU	+21.2%	+23.2%

Table shows the relative performance gain of offline evaluation metric is **precision@K**, online evaluation metric is **precision@K/2** on one violated topic

Container based Training Pipeline

Write manifest files containing requirements like CPU, GPU and Storage

Serving system architecture

We manage over 15 Machine Learning models in production

Horizontal Pod Autoscaler by kubernetes

• Reliable system: Traffic changes with time,

HPA can adopt to varying traffic

• Cheaper billing cost: Reduce to 1/6 by HPA

nercari

day Billing cost transition after applying HPA

Impact of Machine Learning system

Machine Learning system

has increased coverage by **554% ↑** over rule based approach

Question and Thanks collaborator

If you have a question to this talk

First author is Shunya UETA, please e-mail: <u>hurutoriya@mercari.com</u>

Acknowledgements

Co-Authors: Suganprabu Nagarajan, Mizuki Sango

Contributter:

- Abhishek Vilas Munagekar, Yusuke Shido, Vamshi Teja Racha, Sumit Verma and Keisuke Umezawa for their contribute to this system
- Dr. Antony for his feedback about the paper
- Yushi Kurita, Yuki Ito as Product Manager, All Trust and Safety project member and all Customer Service as Moderator to success this project.

