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'mportant Metrics

Sessions

Sessions where a me

mber
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orrm.
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Ranking Function

e m— Member, uU- ltem

S(m' U) = PCliCk(ml u) T Xq PViSit(mJ u) > Xth

* The weight vector x = (x,, x¢3,) controls the balance between the business metrics: Sessions,

Clicks, Send Volume.

o A Sample Business Strategy is

Maximize.  Sessions(x)
S. t. Clicks(x) > cciicks
Send Volume(x) < Csond vVolume



Maijor Challenges

The optimal value of x (tuning parameters) changes over time

- xample of changes

New content types are addeo

Score distribution changes ( Feature dritt, updated models, etc.)

\With every change engineers would manually find the optimal x
Run multiple A/B tests
Not the best use of engineering time




Retormulation into @
Black-Box Optimization
Problem




Modeling The Metrics

Ylk] (x) € {0,1} denotes if the i-th member during the j-th notification which was served by
oarameter x, did action k or not. Here k = Session, Click.

We model this data as tollows

Z Z Y; i(x) ~ Gaussian ( f(x),o°)
L]

Assume a Gaussian process prior on each of the latent tunction f, .

fr(x) ~N (0, Krpr(x,x))



Retormulation

\We approximate each of the metrics as:

Sessions(x) = fopss(X)

Clicks(x) = fciicks(X)
Send Volume(x) = fsy (x)

he original optimization problem can be written through this parametrization.

Maximize fsess(x) Maximize f(x) + A4 (CCliCkS — fclicks (x)) — A2 (fsy — Csv)
s.t. fclicks(X) > Cclicks ‘ x €X

fsv(x) < cgp

Benetfit: The last problem can now be solved using techniques from the literature of Bayesian
Optimization.
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Bayesian Optimization
A Quick Crash Course

- xplore-Exploit scheme to solve

Maximize f(x)
x €X
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Thompson Sampling

Consider a Gaussian Process Prior on each f;,, where

kis Sessions, Clicks or Send Volume
oserve the data (x, f(x))

ne posterior of each f; (x)

O
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ne posterior distribution

_agrangian for the overall objective

ne next distribution of hyperparameters by
outing the probability of each hyper-parameter to

nis process till convergence.

Maximize fsess(X)

S. L.

fClicks(x) > Cclicks
fov(x) < cgp
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System Architecture Overview
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Oftline System
The heart of the product

Tracking

e All member activities are
tracked with the parameter
of interest.

o ETLinto HDFS for easy

consumption.

Utility Evaluation

Using the tracking data we
generate (x, fi, (x)) for each
function k.

The datais keptin
appropriate schema that is
oroblem agnostic.

Bayesian Optimization

The data and the problem
specifications are input to this
module.

Using the data, we first estimate
each of the posterior
distributions of the latent
functions using Gaussian
Process Regression.

Sample from those distributions
to get distribution of the
oarameter x which maximizes
the objective.



The Parameter Store and Online Serving

Bayesian Optimization library generates
A set of potential parameters for serving in the next round (x¢, X5, ..., Xy, )
Serving probability (pq, Py, ..., Pn) of each parameter such that )i p; = 1

To determine the serving parameter for each member, first this member's id is mapped to
[0,1] using a hashing function h. If

“.pi <h(d) < Y

Then Notifications are served with parameter x4 ¢

The parameter store (depending on use cases) can contain

<parameterValue, probability> ie.(x;, p;) or
<memberlId, parameterValue>



Online System

Serving hundreds of millions of users

Parameter Sampling Online Serving

 [Foreach member m visiting LinkedIn, * Depending on the parameter value that is
retrieved (say x), the member’s notifications are

scored according to the ranking function anao
served

* Depending on the parameter store, we either
evaluate <m, parameterValue>

* Or we directly call the store to retrieve

<m,parameterValue> S(m,u) = Peiick(m,u) + xq Pyigic (M, u) > x¢p



’ractical Design Considerations

Consistency in user experience.
Randomize at member level instead of session level.

Ottline Flow Freguency

Batch computation where we collect data for an hour and run the offline flow each hour to update the
sampling distribution.

Works well in our setup. Joint modeling might reduce variance.

Choice ot Business Constraint Thresholds.
Chosen to allow for a small drop.



Results:
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Notitication Optimization Problem Revisited: Tune InApp Thresholo

* June InApp Threshold x

S(m, U) = PCliCk(mJ u) T Xgq PViSit(mJ U) > Xth

*  Optimization Problem

Maximize. Sessions(x:p)
S. T. Clicks(x¢p) > Cclicks
Send Volume (xth) < Csend Volume



Serving Probability of InApp Threshold

* Serving probabi

ity dlistribution

* T[he plotis different depending on

whether the algori

hm is in exploration

stage or exploitation state.
* Serving probability distribution is
calculated via Thompson Sampling.
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Crobability of

Probability of constraint
feasibility
Probability of constraint feasibilit

is the probability that each point

satisties all the constraints.
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-unction Fitting Plot for the Objective: Sessions vs. InApp Thresholo

* Function Fitting
* [he red curve refers to observed
metrics with optional grey lower and
upper confidence bands
* [he blue curve refers to fitted metrics

with lower and upper confidence e — \
bands 3 .
* The horizontal line for the objective . “

refers to the metric for the control
model .
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-unction Fitting Plots for Constraints: Clicks vs. InApp Threshold

* Function Fitting

* [hered curve refers to observed
metrics

* [he blue curve refers to fitted metrics
with lower and upper contidence
bands

* The horizontal line for the constraint — ak
refers to the lower bound / upper

bound for the constraint ’

</
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-unction Fitting Plots for Constraints: Send Volume vs. InApp Threshold

* Function Fitting
* Thered curve reters to observed
metrics
* T[he blue curve reters to fitted metrics
with lower and upper contidence

bands _

e The horizontal line for the constraint N
refers to the lower bound / upper
bound for the constraint

N
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-uture Directions




- uture Directions

* Add on other Explore-txploit Algorithms
 UCB (Upper Confidence Bound), El (Expected Improvement)

o Multi-Task Gaussian Process

o (Offline metrics could provide valuable prior information for online metrics. Multi-Task Gaussian Process models the
correlation between offline metrics and online metrics to achieve faster convergence.

* Problem Splitting

*  Optimal parameters for different cohorts (daily active users, weekly active users) might be ditterent. Problem splitting
targets on searching for parameters for various cohorts.



Key [ akeaways

Removes the human in the loop: Fully automatic process to find the optimal parameters.

Multi-Drastically improves developer productivity.

Can scale to multiple competing metrics.

Very easy onboarding infra for multiple vertical -

eams. Currently used by Ads, Feed,

Notitications, PYMK (People You May Know), et

C.
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