
Rise of the Machines: Removing the
Human-in-the-loop
Aug 12, 2020

Viral Gupta

Tech Lead, Comms AI

Yunbo Ouyang

Sr. Engineer, AI
Foundation

Agenda

1 Problem Setup
LinkedIn Notifications

2 Reformulation as a Black-
Box Optimization

3 Explore-Exploit Algorithm
Thompson Sampling

4 Infrastructure

5 Results: Notification

LinkedIn Connects the World’s Professionals

Remain updated about the
activities of their connections

through newsfeed

Activity Based Notifications

Non-transactional messages, time-
sensitive content

Goal: drive member engagement
while creating delightful
experiences

Feeds & Events Notification

Mobile App Uses Notifications to Inform

Badging

Push

Feeds

Actor

InApp

Recipients

Response

Important Metrics

Sessions

Sessions where a member
engaged on the platform.

Clicks Actions

Members clicks, liked, shared
or commented on an item.

Send Volume

Notifications send to the
members.

Ranking Function

𝑆 𝑚, 𝑢 ≔ 𝑃!"#$% 𝑚, 𝑢 + 𝑥& 𝑃'#(#) 𝑚, 𝑢 > 𝑥)*

• The weight vector 𝑥 = 𝑥! , 𝑥"# controls the balance between the business metrics: Sessions,
Clicks, Send Volume.

• A Sample Business Strategy is

• m – Member, u - Item

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒. 𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝑠(𝑥)
𝑠. 𝑡. 𝐶𝑙𝑖𝑐𝑘𝑠 𝑥 > 𝑐!"#$%(

𝑆𝑒𝑛𝑑 𝑉𝑜𝑙𝑢𝑚𝑒 𝑥 < 𝑐+,-. '/"01,

Major Challenges

● The optimal value of x (tuning parameters) changes over time
● Example of changes

● New content types are added
● Score distribution changes (Feature drift, updated models, etc.)

● With every change engineers would manually find the optimal x
● Run multiple A/B tests

● Not the best use of engineering time

Reformulation into a
Black-Box Optimization

Problem

● 𝑌$,&' 𝑥 ∈ 0,1 denotes if the 𝑖-th member during the 𝑗-th notification which was served by
parameter 𝑥, did action k or not. Here k = Session, Click.

● We model this data as follows

● Assume a Gaussian process prior on each of the latent function 𝑓' .

Modeling The Metrics

!
!

!
"

𝑌!,"(𝑥) ~ Gaussian 𝑓 𝑥 , 𝜎$

𝑓!(𝑥) ~ N 0, 𝐾"#$(𝑥, 𝑥)

Reformulation

We approximate each of the metrics as:

𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝑠 𝑥 = 𝑓%&''(𝑥)
𝐶𝑙𝑖𝑐𝑘𝑠 𝑥 = 𝑓()!*+'(𝑥)
𝑆𝑒𝑛𝑑 𝑉𝑜𝑙𝑢𝑚𝑒 𝑥 = 𝑓%.- (𝑥)

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓!"##(𝑥)
𝑠. 𝑡. 𝑓$%&'(#(𝑥) > 𝑐$%&'(#

𝑓!) 𝑥 < 𝑐!)

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥 + 𝜆* 𝑐$%&'(# − 𝑓$%&'(# 𝑥 − 𝜆+ 𝑓!) − 𝑐#,
𝑥 ∈ 𝑋

Benefit: The last problem can now be solved using techniques from the literature of Bayesian
Optimization.

The original optimization problem can be written through this parametrization.

Explore-Exploit Algorithms

Bayesian Optimization

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥
𝑥 ∈ 𝑋

A Quick Crash Course

• Explore-Exploit scheme to solve

Bayesian Optimization

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥
𝑥 ∈ 𝑋

A Quick Crash Course

• Explore-Exploit scheme to solve

• Assume a Gaussian Process prior on
𝑓 𝑥 .

• Start with uniform sample
get (𝑥, 𝑓 𝑥)

• Estimate the mean function and
covariance kernel

Bayesian Optimization

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥
𝑥 ∈ 𝑋

A Quick Crash Course

• Explore-Exploit scheme to solve

• Assume a Gaussian Process prior on
𝑓 𝑥 .

• Start with uniform sample
get (𝑥, 𝑓 𝑥)

• Estimate the mean function and
covariance kernel

• Draw the next sample 𝑥 which
maximizes an “acquisition function”
or predictive posterior.

• Continue the process.

Bayesian Optimization

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥
𝑥 ∈ 𝑋

A Quick Crash Course

• Explore-Exploit scheme to solve

• Assume a Gaussian Process prior on
𝑓 𝑥 .

• Start with uniform sample
get (𝑥, 𝑓 𝑥)

• Estimate the mean function and
covariance kernel

• Draw the next sample 𝑥 which
maximizes an “acquisition function”
or predictive posterior.

• Continue the process.

Bayesian Optimization

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥
𝑥 ∈ 𝑋

A Quick Crash Course

• Explore-Exploit scheme to solve

• Assume a Gaussian Process prior on
𝑓 𝑥 .

• Start with uniform sample
get (𝑥, 𝑓 𝑥)

• Estimate the mean function and
covariance kernel

• Draw the next sample 𝑥 which
maximizes an “acquisition function”
or predictive posterior.

• Continue the process.

Bayesian Optimization

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥
𝑥 ∈ 𝑋

A Quick Crash Course

• Explore-Exploit scheme to solve

• Assume a Gaussian Process prior on
𝑓 𝑥 .

• Start with uniform sample
get (𝑥, 𝑓 𝑥)

• Estimate the mean function and
covariance kernel

• Draw the next sample 𝑥 which
maximizes an “acquisition function”
or predictive posterior.

• Continue the process.

Thompson Sampling

● Consider a Gaussian Process Prior on each 𝑓' , where
k is Sessions, Clicks or Send Volume

● Observe the data (𝑥, 𝑓'(𝑥))
● Obtain the posterior of each 𝑓'(𝑥)
● Sample from the posterior distribution
● Compute the Lagrangian for the overall objective

function.
● Get the next distribution of hyperparameters by

computing the probability of each hyper-parameter to
be optimal.

● Continue this process till convergence.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓()**(𝑥)
𝑠. 𝑡. 𝑓+,$-'*(𝑥) > 𝑐+,$-'*

𝑓(. 𝑥 < 𝑐(.

Infrastructure

System Architecture Overview

Offline System
The heart of the product

Tracking

• All member activities are
tracked with the parameter
of interest.

• ETL into HDFS for easy
consumption.

Utility Evaluation

• Using the tracking data we
generate (𝑥, 𝑓(𝑥) for each
function k.

• The data is kept in
appropriate schema that is
problem agnostic.

Bayesian Optimization

• The data and the problem
specifications are input to this
module.

• Using the data, we first estimate
each of the posterior
distributions of the latent
functions using Gaussian
Process Regression.

• Sample from those distributions
to get distribution of the
parameter 𝑥 which maximizes
the objective.

• Bayesian Optimization library generates
• A set of potential parameters for serving in the next round (𝑥/, 𝑥0, … , 𝑥1)
• Serving probability 𝑝/, 𝑝0, … , 𝑝1 of each parameter such that ∑$2/1 𝑝$ = 1

• To determine the serving parameter for each member, first this member’s id is mapped to
[0,1] using a hashing function ℎ. If

∑$2/' 𝑝$ < ℎ 𝐼𝑑 ≤ ∑$2/'3/ 𝑝$

Then Notifications are served with parameter 𝑥'3/
• The parameter store (depending on use cases) can contain

• <parameterValue, probability> i.e. 𝑥& , 𝑝& or
• <memberId, parameterValue>

The Parameter Store and Online Serving

Online System
Serving hundreds of millions of users

Parameter Sampling

• For each member 𝑚 visiting LinkedIn,

• Depending on the parameter store, we either
evaluate <m, parameterValue>

• Or we directly call the store to retrieve
<m,parameterValue>

Online Serving

• Depending on the parameter value that is
retrieved (say x), the member’s notifications are
scored according to the ranking function and
served

𝑆 𝑚, 𝑢 ≔ 𝑃$%&'(𝑚, 𝑢 + 𝑥- 𝑃)&#&. 𝑚, 𝑢 > 𝑥./

Practical Design Considerations

● Consistency in user experience.
● Randomize at member level instead of session level.

● Offline Flow Frequency
● Batch computation where we collect data for an hour and run the offline flow each hour to update the

sampling distribution.

● Assume (𝑓%&''()*', 𝑓+,(-!', 𝑓%.) to be Independent
● Works well in our setup. Joint modeling might reduce variance.

● Choice of Business Constraint Thresholds.
● Chosen to allow for a small drop.

Results:
Notification

Notification Optimization Problem Revisited: Tune InApp Threshold

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒. 𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝑠(𝑥)*)
𝑠. 𝑡. 𝐶𝑙𝑖𝑐𝑘𝑠 𝑥)* > 𝑐!"#$%(

𝑆𝑒𝑛𝑑 𝑉𝑜𝑙𝑢𝑚𝑒 𝑥)* < 𝑐+,-. '/"01,

𝑆 𝑚, 𝑢 ≔ 𝑃!"#$% 𝑚, 𝑢 + 𝑥& 𝑃'#(#) 𝑚, 𝑢 > 𝑥)*

• Tune InApp Threshold 𝑥/0

• Optimization Problem

Serving Probability of InApp Threshold

• Serving probability distribution
• The plot is different depending on

whether the algorithm is in exploration
stage or exploitation state.

• Serving probability distribution is
calculated via Thompson Sampling.

Probability of Feasibility of InApp Threshold

• Probability of constraint
feasibility

• Probability of constraint feasibility
is the probability that each point
satisfies all the constraints.

Function Fitting Plot for the Objective: Sessions vs. InApp Threshold

• Function Fitting
• The red curve refers to observed

metrics with optional grey lower and
upper confidence bands

• The blue curve refers to fitted metrics
with lower and upper confidence
bands

• The horizontal line for the objective
refers to the metric for the control
model

Function Fitting Plots for Constraints: Clicks vs. InApp Threshold

• Function Fitting
• The red curve refers to observed

metrics
• The blue curve refers to fitted metrics

with lower and upper confidence
bands

• The horizontal line for the constraint
refers to the lower bound / upper
bound for the constraint

Function Fitting Plots for Constraints: Send Volume vs. InApp Threshold

• Function Fitting
• The red curve refers to observed

metrics
• The blue curve refers to fitted metrics

with lower and upper confidence
bands

• The horizontal line for the constraint
refers to the lower bound / upper
bound for the constraint

Future Directions

Future Directions

• Add on other Explore-Exploit Algorithms
• UCB (Upper Confidence Bound), EI (Expected Improvement)

• Multi-Task Gaussian Process
• Offline metrics could provide valuable prior information for online metrics. Multi-Task Gaussian Process models the

correlation between offline metrics and online metrics to achieve faster convergence.

• Problem Splitting
• Optimal parameters for different cohorts (daily active users, weekly active users) might be different. Problem splitting

targets on searching for parameters for various cohorts.

Key Takeaways

• Removes the human in the loop: Fully automatic process to find the optimal parameters.

• Multi-Drastically improves developer productivity.

• Can scale to multiple competing metrics.

• Very easy onboarding infra for multiple vertical teams. Currently used by Ads, Feed,
Notifications, PYMK (People You May Know), etc.

Thank you

