RAP)IDS

GPU-Accelerated Data Science

John Zedlewski (jzedlewski@nvidia.com)

« Why GPU acceleration for data science?
* What is the RAPIDS stack?

« Scaling with Dask, UCX, and Infiniband
« Benchmarking

* How to get started?

Why GPU-accelerated data science?

Performance gap between GPU and CPU is growing

RISE OF GPU COMPUTING

”
Ik GPU-Computing perf 1000X

107 . b
APPLICATIONS 1.9X per'year y
- 2025
ALGORITHMS o 1.1X peryear _ __¥
SYSTEMS 104

o
Single-threaded perf

ARCHITECTURE 1980 1990 2000 2010 2020

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K.
Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

RAPIDS 4

Why GPUs?

Numerous hardware advantages

Thousands of cores with up to ~20 TeraFlops of } |
general purpose compute performance CPU cPU

H H
L nj

Hardware interconnects for up to 600 GB/s PCle Switches PCle Switches
bidirectional GPU <--> GPU bandwidth

Up to 1.6 TB/s of memory bandwidth

. . GPU GPU GPU

Can scale up to 16x GPUs in a single node 0.5 l | el
Almost never run out of compute relative to jiiorui: GPUZ: GPU jiioruiid
memory bandwidth! - ik

But PCle bandwidth has not scaled at the same rate

NVLink PCle QPI

RAPIDS 5

Machine Learning and Al Go Beyond Deep Learning

From Counting to Actions @ Scale ARTIFICIAL
INTELLIGENCE
Early artificial intelligence
« GPUs are ubiquitous in Deep Learning sis xcitement. MACHINE

, , LEARNIN
« The same matrix operations allow GPUs to be very achine learing

performant at Machine Learning also
« Regressions, Clustering, Decision Trees, Dimensionality
Reduction, etc...
« >90% of Enterprise are primarily using Machine Learning
« Those using Deep Learning often combine with
traditional Machine Learning - preprocessing, filtering, = | | | | | | | |

wilioky * DEEP
Wy LEARNING

. 1950's 1960°'s 1970°s 1980's 1990°s 2000's 2010's
clustering, etc.
. . . Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence - first machine learning, then
o ETL 1S A bOttleneCk for trad]tlonal ML and DL al] ke deep learning, a subset of machine learning - have created ever larger disruptions.

RAPIDS 6

Speeding up data science requires working with
the huge PyData community, not trying to replace it

1}l pandas spaCy ?

Numba

N
." P y D a ta .011 jﬁ DASK O PyTorch
. l\I.eit.wo;l:X T Numpy f’

RAPIDS

What is RAPIDS?

Open Source PyData Ecosystem
Familiar Python APlIs

Data Preparation —> Model Training —>

Matplotlib
Visualization

ikit- PyTorch,
APna&llTSt??:s Ma?:rcwliﬁg Il:ee:ming Grar\é?\t\,&vr?:&ics TensorFlow, MxNet
Deep Learning

RAPIDS 11

RAPIDS

End-to-End, Open Source Accelerated GPU Data Science

Data Preparation — Model Training —
cuDF
Analytics

PyTorch, cuxfilter, pyViz,
TensorFlow, MxNet plotly
Deep Learning Visualization

CUML
Machine Learning

cuGraph
Graph Analytics

>>> Apache
GPU Memory Arrow

|

RAPIDS 12

Data Processing Evolution

Faster Data Access, Less Data Movement

Hadoop Processing, Reading from Disk

ML Train

Query

25-100x Improvement

Spark In-Memory Processing Less Code
Language Flexible

Primarily In-Memory

ML Train <

5-10x Improvement
Traditional GPU Processing More Code

Language Rigid
Substantially on GPU

GPU @i GPU @GP GPU BB

Read Query \"elsl Read ETL Vil Read BIEMY <

RAPIDS 13

Data Movement and Transformation

The Bane of Productivity and Performance

Read Data
APP B <

Copy & Convert

CPU Copy & Convert GPU

[
APP A Copy & Convert
E j <

APP A
Load Data

RAPIDS 14

Data Movement and Transformation
What if We Could Keep Data on the GPU?

Read Data
APP B <

I APP B I CopyXConvert

CPU Copy K%onvert

APP A CopyXConvert
E j <

Load Data

GPU

RAPIDS 15

Learning from Apache Arrow »

Pandas Drill

\~/ll\

Copy & Convert

“ Copy & Convert Copy & Convert Arrow Memory
>

Copy & Convert
Copy & Convert
Parquet HBase

Cassandra

Pandas

Impala

= Each system has its own internal memory format = All systems utilize the same memory format

= 70-80% computation wasted on serialization and deserialization * No overhead for cross-system communication

= Projects can share functionality (eg, Parquet-to-Arrow reader)
= Similar functionality implemented in multiple projects

RAPIDS 16

Data Processing Evolution

Faster Data Access, Less Data Movement

50-100x Improvement
Same Code

Language Flexible
M. Primarily on GPU
Train

RAPIDS

Arrow
Read

RAPIDS

Open Source Data Science Ecosystem
Familiar Python APlIs

Data Preparation —> Model Training —>

Matplotlib
Visualization

ikit- PyTorch,
APna&llTSt??:s Ma?:rcwliﬁg Il:ee:ming Grar\é?\t\,&vr?:&ics TensorFlow, MxNet
Deep Learning

RAPIDS 19

RAPIDS

End-to-End Accelerated GPU Data Science

Data Preparation Model Training Visualization

Dask

PyTorch,
TensorFlow, MxNet
Deep Learning

I I I I
5PU Memory) i

cuDF culo cuxfilter, pyViz,

Analytics

cuML cuGraph

plotly

Machine Learning Graph Analytics Visualization

RAPIDS 20

cuDF

RAPIDS

GPU Accelerated Data Wrangling and Feature Engineering

cuDF culO
Analytics

RAPIDS 22

ETL - the Backbone of Data Science

cuDF is...

PYTHON LIBRARY

A Python library for manipulating GPU
DataFrames following the Pandas API

Python interface to CUDA C++ library with
additional functionality

Creating GPU DataFrames from Numpy arrays,
Pandas DataFrames, and PyArrow Tables

JIT compilation of User-Defined Functions
(UDFs) using Numba

In [2]:

In [3]:

out[3]:

In [6]:

In [7]:

#Read in the data. Notice how it decompresses as it reads the data into memory.
gdf = cudf.read csv('/rapids/Data/black-friday.zip"')

#Taking a look at the data. We use "to pandas()" to get the pretty printing.
gdf.head().to pandas()

User_ID | Product_ID | Gender | Age | Occupation | City_Category | Stay_In_Current_City_Years | Marital_Status | Product_Ca
0| 1000001 | PO0069042 |F ?; 10 A 2 0 3
1| 1000001 | P00248942 |F ?; 10 A 2 0 1
21000001 | PO0O087842 |F ?; 10 A 2 0 12
31000001 | PO0085442 |F ?; 10 A 2 0 12
411000002 | P0O0285442 (M 55+ |16 C 4+ 0 8

#grabbing the first character of the years in city string to get rid of plus sign, and converting
to int
gdf['city years'] = gdf.Stay In Current City Years.str.get(0).stoi()

#Here we can see how we can control what the value of our dummies with the replace method and turn
strings to ints

gdf['City Category'
gdf['City Category'
gdf['City Category'
gdf['City Category'

gdf.City Category.str.replace('A', '1")
gdf.City Category.str.replace('B', '2")
gdf.City Category.str.replace('C', '3'")
gdf['City Category'].str.stoi()

e el] el
| I (I |

RAPIDS 23

Benchmarks: Single-GPU Speedup vs. Pandas

cuDF v0.13, Pandas 0.25.3 H 1M W 100M

900

500
= Running on NVIDIA DGX-1:

970
500
370
350 330 10

= GPU: NVIDIA Tesla V100 32GB

300
= CPU: Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

= Benchmark Setup:
= RMM Pool Allocator Enabled
0

= DataFrames: 2x int32 columns key columns, 3x int32 Merge Sort GroupBy
value columns

GPU Speedup Over CPU

= Merge: inner; GroupBy: count, sum, min, max
calculated for each value column

RAPIDS 25

Extraction is the Cornerstone

culO for Faster Data Loading

= Follow Pandas APIs and provide >10x speedup import pandas, cudf
= CSV Reader - v0.2, CSV Writer v0.8 %time len(pandas.read_csv('data/nyc/yellow_tripdata_2015-01.csv'))
. CPU times: user 25.9 s, sys: 3.26 s, total: 29.2 s
= Parquet Reader - v0.7, Parquet Writer v0.12 Wall time: 29.2 s
12748986

= ORC Reader - v0.7, ORC Writer v0.10

%time len(cudf.read_csv('data/nyc/yellow_tripdata_2015-01.csv'))

= JSON Reader - v0.8 CPU times: user 1.59 s, sys: 372 ms, total: 1.96 s

Wall time: 2.12 s
= Avro Reader - v0.9 12748986

= GPU Direct Storage integration in progress for bypassing 'du -hs data/nyc/yellow_tripdata_2015-01.csv

PCle bottlenecks!
1.9G data/nyc/yellow_tripdata_2015-01.csv

= Key is GPU-accelerating both parsing and decompression

SQL Performance: Part 1 - Input File Formats

RAPIDS 26

http://crail.incubator.apache.org/blog/2018/08/sql-p1.html

RAPIDS

Building Bridges into the Array Ecosystem

PyTorch,

TensorFlow, MxNet
Deep Learning

RAPIDS 27

Interoperability for the Win
DLPack and

mpi4py @xnet

9Numba _£5/3 PYTHRCH

RAPIDS 28

Interoperability for the Win
DLPack and

wo - RAP)DS — oo
]

9Numba _£5/3 PYTHRCH

RAPIDS 29

CUML

Machine Learning

More Models More Problems

CUML
Machine Learning

RAPIDS 31

ML Technology Stack

Python

Cython

cuML Algorithms

CUML Prims & RAFT

CUDA Libraries

Dask cuML
Dask cuDF
cuDF
Numpy

Thrust
Cub
cuSolver
nvGraph
CUTLASS
cuSparse
cuRand
cuBlas

RAPIDS

32

RAPIDS Matches Common Python APIs

CPU-based Clustering

from sklearn.datasets import make moons
import pandas

X, y = make moons (n samples=int (le2),
noise=0.05, random state=0)

X = pandas.DataFrame ({'feasd'%$1: X[:, 1]
for 1 in range (X.shape[l]) })

from sklearn.cluster import DBSCAN
dbscan = DBSCAN(eps = 0.3, min samples

dbscan. fit (X)

y _hat = dbscan.predict (X)

o
§ © oo o
o) o a
°
o) % o
S 4 o
oo
o© o
(@]
SleXe} .‘ ®
(o]] (o]
o) @o
.]
fe)
Em
@ o
% am
- =
ol
=
1 L
(] []
[|
m - . m m
]]
"L L] oy

o)

RAPIDS

33

RAPIDS Matches Common Python APIs

GPU-accelerated Clustering

from sklearn.datasets import make moons
import cudf

X, y = make moons (n samples=int (le2),
noise=0.05, random state=0)

X = cudf.DataFrame ({'fea%d'%1i: X[:, 1]
for 1 in range (X.shape[l]) })

from cuml import DBSCAN

dbscan = DBSCAN(eps = 0.3, min samples

dbscan. fit (X)

y _hat = dbscan.predict (X)

(e] OO
o o © o Oo o
§ o o
o
° ° -
) O o
(] ~ o
(eXo)
o© o
o
L o
: 5 - -
® o .
@
2 O] e]
®
o (o]
Ll]
&
L % am
- [
ol
]
ST
n
- [
[] L] |

S)

RAPIDS

34

Algorithms

GPU-accelerated Scikit-Learn

Decision Trees / Random Forests
Linear/Lasso/Ridge Regression
Classification \ Regression Logistic Regression

K-Nearest Neighbors

Support Vector Machine Classification

Random Forest / GBDT Inference
K-Means
Clustering DBSCAN
Spectral Clustering

Principal Components
Decomposition & Singular Value Decomposition

Di ! litv Reducti UMAP
Cross Validation Imensionality reduction Spectral Embedding
T-SNE
Key:

More to come! Preexisting | NEW or enhanced for 0.14

Holt-Winters
Seasonal ARIMA

RAPIDS 35

Benchmarks: Single-GPU cuML vs Scikit-learn

HM E2M B 4M H 16K W 32K N 64K
120 288 730
80 400 — 340
2 40 > 200 140
; - 76
v 50
3 11 12 S 40
Q a
- >
o 54 5.9 b 13
o 4.2 ¥
w
. >
= EL'J 3.8
O
0
Linear Ridge TSVD Lasso ElasticNet SVCRBF UMAP DBSCAN KNN
Regression Lmear
Operation Operation

1x V100 vs. 2x 20 Core CPU

RAPIDS 36

XGBoost + RAPIDS: Better Together

All RAPIDS changes are integrated upstream and provided

RAPIDS 0.14 comes paired with XGBoost 1.1 to all XGBoost users — via pypi or RAPIDS conda

XGBoost now builds on the GPU array interface
standards to provide zero-copy data import from o0 e
cuDF, cuPY, Numba, PyTorch and more
Official Dask APl makes it easy to scale to multiple o
nodes or multiple GPUs

10.0
Memory usage when importing GPU data
decreased by 2/3 or more

5.0
New objectives support Learning to Rank on GPU

0.0
airline bosch fraud higgs year covtype epsilon

XGBoost speedup on GPUs comparing a single NVIDIA V100 GPU to a dual 20-core Intel Xeon E5-2698 server

RAPIDS 37

Forest Inference

Taking Models From Training to Production

cuML’s Forest Inference Library accelerates prediction

. o XGBoost CPU Inference vs. FIL GPU (1000 trees)
(inference) for random forests and boosted decision trees:

B CPU Time (XGBoost, 40 Cores) M FIL GPU Time (1x V100)

= Works with existing saved models 4000
(XGBoost, LightGBM, scikit-learn RF cuML RF soon) 23x 34x
23x
= Lightweight Python API 3000
36x
= Single V100 GPU can infer up to 34x faster than .
XGBoost dual-CPU node 2 2000
= Over 100 million forest inferences
1000
0
Bosch Airline Higgs Epsilon

RAPIDS 38

RAPIDS Integrated into Cloud ML Frameworks

$400.00 50

Accelerated machine learning models in
RAPIDS give you the flexiblility to use
hyperparameter optimization (HPO)
experiments to explore all variants to find
the most accurate possible model for your
problem.

40

$300.00

> 7Xx cost 20
reduction

> 24x speedup

$200.00
20
$100.00
10
1.8

With GPU acceleration, RAPIDS models

$0.00

can train 40x faster than CPU equivalents, Scikitearn RAPIDS Scikitlearn RAPIDS
enabling more experimentation in less
time' @ Amazon SageMaker ‘/ ‘/ ./ ./
2 M S & ¢ <

The RAPIDS team works closely with A Azure ML § * o o <
major cloud providers and OSS solution 25 coogle Al Pratform & ; $ & & <*
providers to provide code samples to get $ @& & <
started with HPO in minutes cloud-ml-examples
https://rapids.ai/hpo k_ 0

tune)7 DASK

Dask ML

Ray/Tune

RAPIDS 39

cuGraph

Graph Analytics

More Connections, More Insights

cuGraph
Graph Analytics

RAPIDS 41

Graph Technology Stack

Python S Dask cuGraph
Dask cuDF
cuDF
Cython Numpy
cuGraph Algorithms
Prims cuGraphBLAS* cuHornet
Thrust
Cub
CUDA Libraries > cusolver
cuSparse
cuRand
CUDA Gunrock
+cuGraphBLAS is still in development and will be ready late 2020 * Gunrock is from UC Davis

RAPIDS 42

Algorithms

GPU-accelerated NetworkX

Spectral Clustering - Balanced Cu and Modularity Maxim
Louvain (redone for 0.14)

Ensemble Clustering for Graphs

KCore and KCore Number

Triangle Counting

K-Truss

Community

Weakly Connected Components

Components Strongly Connected Components

: : Page Rank (Multi-GPU)
SULUERRE Personal Page Rank

Jaccard
Sub raGLaEQtE;?E?Oe: Link Prediction Weighted Jaccard
grap Overlap Coefficient

Single Source Shortest Path (SSSP)

Traversal Breadth First Search (BFS)

Renumbering
Auto-Renumbering Utilities

Force Atlas 2 Katz

Centrality Betweenness Centrality (redone in 0.14)

RAPIDS 43

Benchmarks: Single-GPU cuGraph vs NetworkX

Performance Speedup cuGraph vs NetworkX

Dataset Nodes Edges

8,00 W louwvain [PageRank [BFS [SSSP preferential Attachment 100,000 999,970
° caidaRouterLevel 192,244 1,218,132
- coAuthorsDBLP 299,067 299,067
6,03 Dblp-2010 326,186 1,615,400
citationCiteseer 268,495 2,313,294
v 4149 coPapersDBLP 540,486 20,491,458
o 4,00 ' 3,913
T,z 0 s coPapersCiteseer 434,102 32,073,440
a As-Skitter 1,696,415 22,190,596
2,093
2,00

1,010

RAPIDS 44

Many more!

See also
Many more RAPIDS-related projects

NVIDIA-sponsored projects

cuSpatial - Spatial Analytics

cuSignal - Accelerated signal processing

CLX - RAPIDS and Deep Learning for Cybersecurity and Log Analytics
cuStreamz - GPU-accelerated streaming data (matching Python streamz API)

NVTabular - Deep Learning for tabular datam with loaders accelerated by RAPIDS

Others:
BlazingSQL - GPU-accelerated SQL engine
Plot.ly - Python charting with GPU accelerated backends

Graphistry - Interactive visualization for graphs and complex data

RAPIDS 46

https://github.com/rapidsai/clx

Dask and
RAPIDS Distributed Compute

RAPIDS

Scaling RAPIDS with Dask

Dask

RAPIDS 48

Scale Up with RAPIDS

RAPIDS AND OTHERS

Accelerated on single GPU

NumPy -> CuPy/PyTorch/.. RAP ' DS
Pandas -> cuDF

Scikit-Learn -> cuML

Numba -> Numba

PYDATA
NumPy, Pandas, Scikit-Learn, . ez
y ? a NumPy

Numba and many more Numba

Scale Up / Accelerate

Single CPU core
In-memory data Py O learn

RAPIDS 49

Scaling Up and Out with RAPIDS, Dask, OpenUCX

A
RAPIDS AND OTHERS RAPIDS + DASK RAPIDS
Accelerated on single GPU WITH OPENUCX

Multi-GPU

o | | Pandess cupp TR RAPIDS 0n single Node (DG) @

andas -> cu

45 Scikit-Learn -> cUML Or across a cluster

O Numba -> Numba

¢ /7/ DASK

O

<

S~

=)

O PYDATA DASK

S NumPy, Pandas, Scikit-Learn, ? a 5 Bfa-?i‘? Multi-core and distributed PyData

wn Numba and many more Numba NumPy

NumPy -> Dask Array f
Single CPU core Pandas -> Dask DataFrame [/ DASK
In-memory data Py O learn Scikit-Learn -> Dask-ML

... -> Dask Futures

Scale Out / Parallelize

RAPIDS 50

Why Dask?

DEPLOYABLE

= HPC: SLURM, PBS, LSF, SGE
= Cloud: Kubernetes

= Hadoop/Spark: Yarn

PYDATA NATIVE ,
= Easy Migration: Built on top of NumPy, Pandas Scikit-Learn, etc /

= Easy Training: With the same APIs
= Trusted: With the same developer community

EASY SCALABILITY

= Easy to install and use on a laptop
= Scales out to thousand node clusters

POPULAR

= Most Common parallelism framework today in the PyData and SciPy community

RAPIDS 51

Why OpenUCX?

Bringing Hardware Accelerated Communications to Dask

= TCP sockets are slow!

= Topologies are complex!

= UCX provides uniform access to
transports (TCP, InfiniBand,
shared memory, NVLink, ethernet)

EDR InfiniBand

= PCle Gen3 x16
DDR4 Memory Bus

= Open source Python bindings for UCX ap
(ucx-py) now available in beta NVLINK (not shown)

= Will provide best communication
performance, with topology-aware
routing, to Dask and cuML
communications

conda install -c conda-forge -c rapidsai \
cudatoolkit=<CUDA version> ucxXx-proc=*=gpu UCX UCX-pPVY

RAPIDS Y)

Benchmarks: Distributed cuDF Random Merge

Comm Type cuDF v0.14, UCX-PY 0.14
m DGX2 NV
IB+NV
.5 - Running on NVIDIA DGX-2:
NV
m TCP-UCX GPU: NVIDIA Tesla V100 32GB

CPU: Intel(R) Xeon(R) CPU 8168 @ 2.70GHz

= Benchmark Setup:

DataFrames: Left/Right 1x int64 column key column,
1x inté64 value columns

Merge: Inner

30% of matching data balanced across each partition

3.9

RAPIDS

Real-world performance in Dask
UCX impact (with IB+NVLink) on TPCx-BB Query 3

UCX off (red = waiting on comms) UCX on (red = waiting on comms)

— Riop SIS

it G
{TW'
lll '1‘[.

[..'?F Hlk

J

RAPIDS 54

Large-scale Benchmarking
with Distributed RAPIDS

WHAT IS TPCX-BB®?

Comparing Big Data Platforms since the Cambrian Explosion of Big Data

TPC is the leader in benchmarking Data Analytics and Data Science
Systems

TPCx-BB benchmark measures the performance of both hardware and
software components by executing 30 frequently performed analytical
queries in the context of retailers with physical and online store presence

Is the only TPC benchmark that starts from disk, does ETL (structured,
semi-structured, and unstructured), and machine learning

VERTICA

teradata.

Pivotal
Greenplumr

SEETKE

/7/ DASK

-
()

Cockroach pe

brytlyt

Amazon
Aurora

HORTONWORKS®

CLOUD=RA

56 <ANVIDIA.

TPCX-BB

CPU Performance

Hadoop Processing, Reading from Disk

Spark In-Memory Processing 52551 2221(e|mprovement

Language flexible
Primarily In-Memory

ML Train <

Benchmark Standardized Performance vs Price/Server Overtime TPCx-BB SF10K (10TB) CPU Results
Company - # of Servers used Price/Perf Across Time

80,000.00
1000

Current Leader, Dell: 19 servers @
S61K/server ™ —
' 546.82

g N HPE -21 § 510.19
& 40,000.00 . XCOS ¢ L . . 500 . _
: ot Cost > Only ~1.5x speedup in last 2 years, driven § “

20,000.00 primarily by Scale Up aS OppOSGd tO Scale ; 250

out
000 — =00 P 00 200 ° THHT 11118 THHE 1119 7119
Standardized Performance: Cost/All Query Time Date

57 <ANVIDIA.

TPCX-BB

GPU Performance

RAPIDS 50-100x Improvement
Same code

Language flexible
Primarily on GPU

RAPIDS

Read*

58 <A NVIDIA.

RAPIDS RUNNING TPCX-BB AT 1 TB AND 10 TB SFS

Up to 350x faster queries; Hours to Seconds!

SF1K Speedup with RAPIDS

®m CPU Cluster m RAPIDS
Like other TPC benchmarks, TPCx-BB can be run at

1000

multiple “Scale Factors”: 500

SF1 - 1GB g

SF1K - 1 TB § 123

- 2 Avg: 51 d-

SF10K - 10 TB S . || | >40xv§orm§lisfteecf fol:%ost
We’ve been benchmarking RAPIDS implementations 1 MLMMWMHMHQEQ h!!!!!!!',lgﬂm "L
of the TPCx-BB queries at the SF1K (Single DGX-2) & e
SF10K (17x DGX-1) scales SF10K Speedup with RAPIDS

B CPU Cluster ® RAPIDS
Our results indicate that GPUs provide dramatic cost 1000
and time-savings for small scale and large-scale data s
analytics problems. (Unofficial results currently) 8 Avg: >10x speed-up
& 100 >5x Normalized for Cost

NNNNNNNNNNNNNNNNNNNNNNNNNNNN

N u m ba Query Number

0

blazingSQL DASK

59 <ANVIDIA.

QUERY SPOTLIGHT - UDFS AT SCALE ON GPUS

Query 3: What is viewed before a purchase?

Repartition web-clickstream table on user key
Ensure all web activity records available within a single “chunk”
(partition) of records that fit within the memory space of a single
worker

Compute aggregate metrics on user’s sessions
Sort on event timestamp within user sessions

Run a user-defined-function with custom processing logic
for classifying session behavior

DataFrame APIs are great, but real business logic is complex,
needing to support custom code

RAPIDS uses Numba to compile simple Python expressions into GPU
accelerated logic

Run Python on GPUs!

@cuda.jit

def find_items_viewed_before_purchase_kernel(

relevant_idx_col, user_col, timestamp_col, item_col, out_col, N

):

Find the past N items viewed after a relevant purchase was made,
as defined by the configuration of this query.

i = cuda.grid(1)

relevant_item = q@3_purchased_item_IN

if i < (relevant_idx_col.size): # boundary guard

every relevant row gets N rows in the output, so we need to map the indexes
back into their position in the original array
orig_idx = relevant_idx_col/[i]

current_user = user_col[orig_idx]

look at the previous N clicks (assume sorted descending)
rows_to _check = N

remaining_rows = user_col.size - orig_idx

if remaining_rows <= rows_to_check:
rows_to_check = remaining_rows — 1

for k in range(1l, rows_to_check + 1):
if current_user != user_collorig_idx + kl:
out_col[i x* N + k — 1] = 0

only checking relevant purchases via the relevant_idx_col

elif (timestamp_collorig_idx + k] <= timestamp_collorig_idx]) & (
timestamp_collorig_idx + k]
>= (timestamp_collorig_idx] - q@3_days_in_sec_before_purchase)

):
out_col[i * N + k = 1] = item_col[orig_idx + k]

else: NA.

QUERY SPOTLIGHT - NATURAL LANGUAGE PROCESSING

Query 18 - are bad reviews correlated with bad sales?

Subset the data to a set of four months
After joining tables containing store, store sales, data, and customer review data,
split by row groups for better parallelism

For each store, regress date on the sum of net sales and retain the beta

coefficient and select those stores with a negative slope
Repartition this table to be one partition (it is small: only 192 rows at SF1000)

Make a list of all the unique store names
RAPIDS has an extensive set of string functions, bringing string manipulation to the
GPU

Find reviews that include any of the store names

For reviews that contain a store's name, return sentences containing a negative

word and the negative word itself
Break reviews into sentences
Search sentences for words contained in a text file of negative words
Return the store name, date of the review, sentence, and word for sentences
where negative words appeared.
NLP on GPU!

no_nulls["pr_review_content"] = no_nulls.pr_review_content.str.replace_multi(

(.o, "2t " "], EOL_CHAR, regex=False
)

sentences = no_nulls.map_partitions(create_sentences_from_reviews)

need the global position in the sentence tokenized df
sentences["x"] =1

sentences ["sentence_tokenized_global_pos"] = sentences.x.cumsum()

del sentences["x"]

This file comes from the official TPCx-BB kit

We extracted it from bigbenchqueriesmr.jar

with open("negativeSentiment.txt") as fh:
negativeSentiment = list(map(str.strip, fh.readlines()))
dedupe for one extra record in the source file

negativeSentiment = list(set(negativeSentiment))

word_df = sentences.map_partitions(
create_words_from_sentences,
global_position_column="sentence_tokenized_global_pos",

)

sent_df = cudf.DataFrame({"word": negativeSentiment})

sent_df ["sentiment"] = "NEG"

sent_df = dask_cudf.from_cudf(sent_df, npartitions=1)

word_sentence_sentiment = word_df.merge(sent_df, how="inner",

on="word")

word_sentence_sentiment["sentence_idx_global_pos"] = word_sentence_sentiment [

""'sentence_idx_global_pos"

l.astype("int64")

sentences ["sentence_tokenized_global_pos"] = sentences]|
""'sentence_tokenized_global_pos"

]l.astype("int64")

~=-. -

N

Getting Started

5 Steps to Getting Started with RAPIDS

1. Install RAPIDS on using Docker, Conda, or Colab.

2. Explore our walk through videos, blog content, our github, the tutorial notebooks, and our example workflows.

3. Build your own data science workflows.

4. Join our community conversations on Slack, Google, and Twitter.

5. Contribute back. Don't forget to ask and answer questions on Stack Overflow.

RAPIDS 63

https://rapids.ai/start.html
https://colab.research.google.com/drive/1XTKHiIcvyL5nuldx0HSL_dUa8yopzy_Y#forceEdit=true&offline=true&sandboxMode=true
https://www.youtube.com/channel/UCsoi4wfweA3I5FsPgyQnnqw?view_as=subscriber
https://medium.com/rapids-ai
https://github.com/rapidsai
https://github.com/rapidsai/notebooks-extended#getting-started-notebooks
https://github.com/rapidsai/notebooks-extended#intermediate-notebooks
https://join.slack.com/t/rapids-goai/shared_invite/enQtMjE0Njg5NDQ1MDQxLTViZWFiYTY5MDA4NWY3OWViODg0YWM1MGQ1NzgzNTQwOWI1YjE3NGFlOTVhYjQzYWQ4YjI4NzljYzhiOGZmMGM
https://github.com/rapidsai/rapidsai-staging/issues/RAPIDSai@googlegroups.com
https://twitter.com/rapidsai
https://stackoverflow.com/tags/rapids

Easy Installation

Interactive Installation Guide

RAPIDS RELEASE SELECTOR

RAPIDS is available as conda packages, docker images, and from source builds. Use the tool below to select your preferred method, packages, and
environment to install RAPIDS. Certain combinations may not be possible and are dimmed automatically. Be sure you’ve met the required
and see the

[Preferred 1 [& Advanced 1

METHOD Docker + Examples & Docker + Dev Env &*

pxcraces
oron

NOTE: Ubuntu 16.04/18.04 & CentOS 7 use the same commands.

ol |\\'IDl conda install -c rapidsai -c nvidia -c conda-forge \
-c defaults rapids=0.14 python=3.6

https://rapids.ai/start.html

RAPIDS 64

https://rapids.ai/start.html

Explore: RAPIDS Github

Pull requests Issues Marketplace Explore

Open GPU Data Science
http://rapids.ai
Repositories 67 Packages People 118 Teams 91 Projects 6
Pinned repositories
cudf cuml| cugraph
cuDF - GPU DataFrame Library cuML - RAPIDS Machine Learning Library cuGraph - RAPIDS Graph Analytics Library
@®cuda K19k ¥ 270 @c++ *ees5 Y119 @Cuda w204 Y52
notebooks notebooks-contrib cuxfilter
RAPIDS Sample Notebooks RAPIDS Community Notebooks GPU accelerated cross filtering
@ Jupyter Notebook W 204 ¥ 94 @ Jupyter Notebook W 106 Y76 @ Python W 31 ¥ 14

https://github.com/rapidsai

RAPIDS 65

https://github.com/rapidsai

THANK YOU

John Zedlewski

@/stats
@RAPIDSai

RAP)IDS

mailto:jzedlewski@nvidia.com

