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Roadmap

• Why GPU acceleration for data science?

• What is the RAPIDS stack?

• Scaling with Dask, UCX, and Infiniband

• Benchmarking

• How to get started?
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Why GPU-accelerated data science?
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Performance gap between GPU and CPU is growing
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Why GPUs?
Numerous hardware advantages

• Thousands of cores with up to ~20 TeraFlops of 

general purpose compute performance

• Up to 1.6 TB/s of memory bandwidth

• Hardware interconnects for up to 600 GB/s 

bidirectional GPU <--> GPU bandwidth

• Can scale up to 16x GPUs in a single node

Almost never run out of compute relative to 

memory bandwidth!

But PCIe bandwidth has not scaled at the same rate
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What is Data Science
Machine Learning and AI Go Beyond Deep Learning

From Counting to Actions @ Scale

• GPUs are ubiquitous in Deep Learning

• The same matrix operations allow GPUs to be very 

performant at Machine Learning also

• Regressions, Clustering, Decision Trees, Dimensionality 

Reduction, etc…

• >90% of Enterprise are primarily using Machine Learning

• Those using Deep Learning often combine with 

traditional Machine Learning – preprocessing, filtering, 

clustering, etc.

• ETL is a bottleneck for traditional ML and DL alike
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Where are we starting
Python and Spark
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Why is Accelerating Data Science hardSpeeding up data science requires working with
the huge PyData community, not trying to replace it
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What is RAPIDS?
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Pandas
Analytics

CPU Memory

Data Preparation VisualizationModel Training

Scikit-Learn
Machine Learning

NetworkX
Graph Analytics

PyTorch,
TensorFlow, MxNet

Deep Learning

Matplotlib
Visualization

Dask

Open Source PyData Ecosystem
Familiar Python APIs
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cuDF
Analytics

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch, 
TensorFlow, MxNet

Deep Learning

cuxfilter, pyViz, 
plotly

Visualization

Dask

GPU Memory

RAPIDS
End-to-End, Open Source Accelerated GPU Data Science
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25-100x Improvement
Less Code
Language Flexible
Primarily In-Memory
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5-10x Improvement
More Code
Language Rigid
Substantially on GPU

Traditional GPU Processing

Hadoop Processing, Reading from Disk

Spark In-Memory Processing

Data Processing Evolution
Faster Data Access, Less Data Movement
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Data Movement and Transformation
The Bane of Productivity and Performance
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Data Movement and Transformation
What if We Could Keep Data on the GPU?
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▪ Each system has its own internal memory format

▪ 70-80% computation wasted on serialization and deserialization

▪ Similar functionality implemented in multiple projects

▪ All systems utilize the same memory format

▪ No overhead for cross-system communication

▪ Projects can share functionality (eg, Parquet-to-Arrow reader)

Source: From Apache Arrow Home Page - https://arrow.apache.org/

Learning from Apache Arrow
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25-100x Improvement
Less Code
Language Flexible
Primarily In-Memory
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More Code
Language Rigid
Substantially on GPU

Traditional GPU Processing

Hadoop Processing, Reading from Disk

Spark In-Memory Processing

Data Processing Evolution
Faster Data Access, Less Data Movement
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50-100x Improvement
Same Code
Language Flexible
Primarily on GPU
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Pandas
Analytics

CPU Memory

Data Preparation VisualizationModel Training

Scikit-Learn
Machine Learning

NetworkX
Graph Analytics

PyTorch,
TensorFlow, MxNet

Deep Learning

Matplotlib
Visualization

Dask

Open Source Data Science Ecosystem
Familiar Python APIs
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cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch, 
TensorFlow, MxNet

Deep Learning

cuxfilter, pyViz, 
plotly

Visualization

Dask

RAPIDS
End-to-End Accelerated GPU Data Science
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cuDF
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Dask

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch, 
TensorFlow, MxNet

Deep Learning

cuxfilter, pyViz, 
plotly

Visualization

RAPIDS
GPU Accelerated Data Wrangling and Feature Engineering

cuDF cuIO
Analytics
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ETL - the Backbone of Data Science

PYTHON LIBRARY

▪ A Python library for manipulating GPU 
DataFrames following the Pandas API

▪ Python interface to CUDA C++ library with 
additional functionality

▪ Creating GPU DataFrames from Numpy arrays, 
Pandas DataFrames, and PyArrow Tables

▪ JIT compilation of User-Defined Functions 
(UDFs) using Numba

cuDF is…
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Benchmarks: Single-GPU Speedup vs. Pandas

cuDF v0.13, Pandas 0.25.3

▪ Running on NVIDIA DGX-1:

▪ GPU: NVIDIA Tesla V100 32GB

▪ CPU: Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

▪ Benchmark Setup:

▪ RMM Pool Allocator Enabled

▪ DataFrames: 2x int32 columns key columns, 3x int32 
value columns

▪ Merge: inner; GroupBy: count, sum, min, max 
calculated for each value column
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Extraction is the Cornerstone

▪ Follow Pandas APIs and provide >10x speedup

▪ CSV Reader - v0.2, CSV Writer v0.8

▪ Parquet Reader – v0.7, Parquet Writer v0.12

▪ ORC Reader – v0.7, ORC Writer v0.10

▪ JSON Reader - v0.8

▪ Avro Reader - v0.9

▪ GPU Direct Storage integration in progress for bypassing 
PCIe bottlenecks!

▪ Key is GPU-accelerating both parsing and decompression 

cuIO for Faster Data Loading

Source: Apache Crail blog: SQL Performance: Part 1 - Input File Formats

http://crail.incubator.apache.org/blog/2018/08/sql-p1.html
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Dask

cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

cuxfilter, pyViz, 
plotly

Visualization

RAPIDS
Building Bridges into the Array Ecosystem

PyTorch, 
TensorFlow, MxNet

Deep Learning
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mpi4py

Interoperability for the Win
DLPack and __cuda_array_interface__
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mpi4py

Interoperability for the Win
DLPack and __cuda_array_interface__
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cuML
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PyTorch, 
TensorFlow, MxNet

Deep Learning

Dask

cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuGraph
Graph Analytics

cuxfilter, pyViz, 
plotly

Visualization

Machine Learning
More Models More Problems

cuML
Machine Learning
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Dask cuML
Dask cuDF

cuDF
Numpy

Python

Thrust
Cub

cuSolver
nvGraph
CUTLASS
cuSparse
cuRand
cuBlas

Cython

cuML Algorithms

cuML Prims & RAFT

CUDA Libraries

CUDA

ML Technology Stack
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RAPIDS Matches Common Python APIs
CPU-based Clustering

from sklearn.datasets import make_moons

import pandas

X, y = make_moons(n_samples=int(1e2), 

noise=0.05, random_state=0)

X = pandas.DataFrame({'fea%d'%i: X[:, i]

for i in range(X.shape[1])})

from sklearn.cluster import DBSCAN

dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)
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from sklearn.datasets import make_moons

import cudf

X, y = make_moons(n_samples=int(1e2), 

noise=0.05, random_state=0)

X = cudf.DataFrame({'fea%d'%i: X[:, i]

for i in range(X.shape[1])})

from cuml import DBSCAN

dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

RAPIDS Matches Common Python APIs
GPU-accelerated Clustering
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Decision Trees / Random Forests
Linear/Lasso/Ridge Regression
Logistic Regression
K-Nearest Neighbors
Support Vector Machine Classification

Principal Components
Singular Value Decomposition
UMAP
Spectral Embedding
T-SNE

Holt-Winters
Seasonal ARIMA

More to come!

Random Forest / GBDT Inference

K-Means
DBSCAN
Spectral Clustering

Time Series

Decomposition &

Dimensionality Reduction

Clustering

Inference

Classification \ Regression

Hyper-parameter Tuning

Cross Validation

Key:
Preexisting | NEW or enhanced for 0.14

Algorithms
GPU-accelerated Scikit-Learn
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Benchmarks: Single-GPU cuML vs Scikit-learn
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XGBoost + RAPIDS: Better Together

RAPIDS 0.14 comes paired with XGBoost 1.1

XGBoost now builds on the GPU array interface 

standards to provide zero-copy data import from 

cuDF, cuPY, Numba, PyTorch and more

Official Dask API makes it easy to scale to multiple 

nodes or multiple GPUs

Memory usage when importing GPU data 

decreased by 2/3 or more

New objectives support Learning to Rank on GPU

All RAPIDS changes are integrated upstream and provided 
to all XGBoost users – via pypi or RAPIDS conda
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Forest Inference

cuML’s Forest Inference Library accelerates prediction 
(inference) for random forests and boosted decision trees:

▪ Works with existing saved models 
(XGBoost, LightGBM, scikit-learn RF cuML RF soon)

▪ Lightweight Python API

▪ Single V100 GPU can infer up to 34x faster than 
XGBoost dual-CPU node

▪ Over 100 million forest inferences 

Taking Models From Training to Production
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RAPIDS Integrated into Cloud ML Frameworks

Accelerated machine learning models in 

RAPIDS give you the flexibility to use 

hyperparameter optimization (HPO) 

experiments to explore all variants to find 

the most accurate possible model for your 

problem.

With GPU acceleration, RAPIDS models 

can train 40x faster than CPU equivalents, 

enabling more experimentation in less 

time.

The RAPIDS team works closely with 

major cloud providers and OSS solution 

providers to provide code samples to get 

started with HPO in minutes 

https://rapids.ai/hpo

> 7x cost 

reduction
> 24x speedup
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cuGraph



41

cuML
Machine Learning

PyTorch, 
TensorFlow, MxNet

Deep Learning

Dask

cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuxfilter, pyViz, 
plotly

Visualization

Graph Analytics
More Connections, More Insights

cuGraph
Graph Analytics
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Dask cuGraph
Dask cuDF

cuDF
Numpy

Python

Thrust
Cub

cuSolver
cuSparse
cuRand

Gunrock*

Cython

cuGraph Algorithms

CUDA

Prims cuGraphBLAS+ cuHornet

CUDA Libraries

* Gunrock is from UC Davis

Graph Technology Stack

+cuGraphBLAS is still in development and will be ready late 2020
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Spectral Clustering - Balanced Cu and Modularity Maxim
Louvain (redone for 0.14)
Ensemble Clustering for Graphs
KCore and KCore Number
Triangle Counting
K-Truss

Jaccard
Weighted Jaccard
Overlap Coefficient

Single Source Shortest Path (SSSP)
Breadth First Search (BFS)

Katz
Betweenness Centrality (redone in 0.14)

Weakly Connected Components
Strongly Connected Components

Page Rank (Multi-GPU)
Personal Page Rank

Renumbering
Auto-Renumbering

Force Atlas 2
Centrality

Traversal

Link Prediction

Link Analysis

Components

Community

Utilities

Structure

GPU-accelerated NetworkX
Algorithms

Graph Classes
Subgraph Extraction
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Benchmarks: Single-GPU cuGraph vs NetworkX

Dataset Nodes Edges

preferentialAttachment 100,000 999,970

caidaRouterLevel 192,244 1,218,132

coAuthorsDBLP 299,067 299,067

Dblp-2010 326,186 1,615,400

citationCiteseer 268,495 2,313,294

coPapersDBLP 540,486 20,491,458

coPapersCiteseer 434,102 32,073,440

As-Skitter 1,696,415 22,190,596
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Many more!
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See also

NVIDIA-sponsored projects

• cuSpatial – Spatial Analytics

• cuSignal – Accelerated signal processing

• CLX – RAPIDS and Deep Learning for Cybersecurity and Log Analytics

• cuStreamz – GPU-accelerated streaming data (matching Python streamz API)

• NVTabular – Deep Learning for tabular datam with loaders accelerated by RAPIDS

Others:

• BlazingSQL – GPU-accelerated SQL engine

• Plot.ly – Python charting with GPU accelerated backends

• Graphistry – Interactive visualization for graphs and complex data

Many more RAPIDS-related projects

https://github.com/rapidsai/clx
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Dask and
RAPIDS Distributed Compute
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cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch, 
TensorFlow, MxNet

Deep Learning

cuxfilter, pyViz, 
plotly

Visualization

RAPIDS
Scaling RAPIDS with Dask

Dask
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Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS AND OTHERS

NumPy, Pandas, Scikit-Learn, 
Numba and many more

Single CPU core
In-memory data

PYDATA

S
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a
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Scale Up with RAPIDS
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Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS AND OTHERS

Multi-GPU
On single Node (DGX)
Or across a cluster

RAPIDS + DASK 
WITH OPENUCX

NumPy, Pandas, Scikit-Learn, 
Numba and many more

Single CPU core
In-memory data

PYDATA
Multi-core and distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

DASK

S
c
a
le

 U
p
 /

 A
c
c
e
le

ra
te

Scale Out / Parallelize

Scaling Up and Out with RAPIDS, Dask, OpenUCX
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Why Dask?

DEPLOYABLE

▪ HPC: SLURM, PBS, LSF, SGE

▪ Cloud: Kubernetes

▪ Hadoop/Spark: Yarn

PYDATA NATIVE

▪ Easy Migration: Built on top of NumPy, Pandas Scikit-Learn, etc

▪ Easy Training: With the same APIs

▪ Trusted: With the same developer community

EASY SCALABILITY

▪ Easy to install and use on a laptop

▪ Scales out to thousand node clusters

POPULAR

▪ Most Common parallelism framework today in the PyData and SciPy community 
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▪ TCP sockets are slow!

▪ Topologies are complex!

▪ UCX provides uniform access to 
transports (TCP, InfiniBand, 
shared memory, NVLink, ethernet)

▪ Open source Python bindings for UCX 
(ucx-py) now available in beta

▪ Will provide best communication 
performance, with topology-aware 
routing, to Dask and cuML 
communications

Why OpenUCX?
Bringing Hardware Accelerated Communications to Dask

conda install -c conda-forge -c rapidsai \

cudatoolkit=<CUDA version> ucx-proc=*=gpu ucx ucx-py
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cuDF v0.14, UCX-PY 0.14

▪ Running on NVIDIA DGX-2:

▪ GPU: NVIDIA Tesla V100 32GB

▪ CPU: Intel(R) Xeon(R) CPU 8168 @ 2.70GHz

▪ Benchmark Setup:

▪ DataFrames: Left/Right 1x int64 column key column, 
1x int64 value columns

▪ Merge: Inner

▪ 30% of matching data balanced across each partition

Benchmarks: Distributed cuDF Random Merge



54

Real-world performance in Dask
UCX impact (with IB+NVLink) on TPCx-BB Query 3

UCX off (red = waiting on comms) UCX on (red = waiting on comms)
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Large-scale Benchmarking
with Distributed RAPIDS
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WHAT IS TPCX-BB®? 
Comparing Big Data Platforms since the Cambrian Explosion of Big Data

TPC is the leader in benchmarking Data Analytics and Data Science 
Systems

TPCx-BB benchmark measures the performance of both hardware and 
software components by executing 30 frequently performed analytical 
queries in the context of retailers with physical and online store presence

Is the only TPC benchmark that starts from disk, does ETL (structured, 
semi-structured, and unstructured), and machine learning
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TPCX-BB
CPU Performance

HDFS 

Read

HDFS 

Write

HDFS 

Read

HDFS 

Write

HDFS 

Read
Query ETL ML Train

HDFS 

Read
Query ETL ML Train

Hadoop Processing, Reading from Disk

Spark In-Memory Processing

Hadoop Processing, Reading from Disk

Spark In-Memory Processing 25-100x Improvement
Less code
Language flexible
Primarily In-Memory

Current Leader, Dell: 19 servers @ 
$61K/server

Only ~1.5x speedup in last 2 years, driven 
primarily by scale up as opposed to scale 

out

Why TPCx-BB

• TPC is the leader in benchmarking Data Analytics 
and Data Science Systems

• Benchmark created by Intel and HPE
• Benchmark used as a critical selling point of 

Alibaba Max Compute
• Only TPC benchmark that starts from disk, does 

ETL (structured, semi-structured, and 
unstructured), and machine learning

1.5x Cost Increase 1.56x Improvement
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TPCX-BB
GPU Performance

HDFS 

Read

HDFS 

Write

HDFS 

Read

HDFS 

Write

HDFS 

Read
Query ETL ML Train

HDFS 

Read
Query ETL ML Train

HDFS 

Read
GPU 

Read
Query

CPU

Write

GPU 

Read
ETL

CPU

Write

GPU 

Read

ML

Train

Hadoop Processing, Reading from Disk

Spark In-Memory Processing

RAPIDS

RAPIDS

Read*
ETL

ML

Train
Query

Traditional GPU Processing

Hadoop Processing, Reading from Disk

Spark In-Memory Processing 25-100x Improvement
Less code
Language flexible
Primarily In-Memory

5-10x Improvement
More code
Language rigid
Substantially on GPU

50-100x Improvement
Same code
Language flexible
Primarily on GPU
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RAPIDS RUNNING TPCX-BB AT 1 TB AND 10 TB SFS
Up to 350x faster queries; Hours to Seconds!

Like other TPC benchmarks, TPCx-BB can be run at 
multiple “Scale Factors”:

SF1 - 1GB
SF1K - 1 TB
SF10K - 10 TB

We’ve been benchmarking RAPIDS implementations 
of the TPCx-BB queries at the SF1K (Single DGX-2) & 
SF10K (17x DGX-1) scales

Our results indicate that GPUs provide dramatic cost 
and time-savings for small scale and large-scale data 
analytics problems. (Unofficial results currently)

Avg: 51x speed-up
>40x Normalized for Cost

Avg: >10x speed-up
>5x Normalized for Cost

CPU Cluster

CPU Cluster
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QUERY SPOTLIGHT - UDFS AT SCALE ON GPUS
Query 3: What is viewed before a purchase? 

Repartition web-clickstream table on user key
Ensure all web activity records available within a single “chunk” 
(partition) of records that fit within the memory space of a single 
worker

Compute aggregate metrics on user’s sessions

Sort on event timestamp within user sessions

Run a user-defined-function with custom processing logic 
for classifying session behavior

DataFrame APIs are great, but real business logic is complex, 
needing to support custom code

RAPIDS uses Numba to compile simple Python expressions into GPU 
accelerated logic

Run Python on GPUs!
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QUERY SPOTLIGHT - NATURAL LANGUAGE PROCESSING

Query 18 - are bad reviews correlated with bad sales? 

Subset the data to a set of four months
After joining tables containing store, store sales, data, and customer review data, 
split by row groups for better parallelism

For each store, regress date on the sum of net sales and retain the beta 
coefficient and select those stores with a negative slope

Repartition this table to be one partition (it is small: only 192 rows at SF1000)

Make a list of all the unique store names
RAPIDS has an extensive set of string functions, bringing string manipulation to the 
GPU

Find reviews that include any of the store names

For reviews that contain a store's name, return sentences containing a negative 
word and the negative word itself

Break reviews into sentences
Search sentences for words contained in a text file of negative words
Return the store name, date of the review, sentence, and word for sentences 
where negative words appeared.
NLP on GPU!
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Getting Started
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1. Install RAPIDS on using Docker, Conda, or Colab.

2. Explore our walk through videos, blog content, our github, the tutorial notebooks, and our example workflows.

3. Build your own data science workflows.

4. Join our community conversations on Slack, Google, and Twitter. 

5. Contribute back. Don't forget to ask and answer questions on Stack Overflow.

5 Steps to Getting Started with RAPIDS

https://rapids.ai/start.html
https://colab.research.google.com/drive/1XTKHiIcvyL5nuldx0HSL_dUa8yopzy_Y#forceEdit=true&offline=true&sandboxMode=true
https://www.youtube.com/channel/UCsoi4wfweA3I5FsPgyQnnqw?view_as=subscriber
https://medium.com/rapids-ai
https://github.com/rapidsai
https://github.com/rapidsai/notebooks-extended#getting-started-notebooks
https://github.com/rapidsai/notebooks-extended#intermediate-notebooks
https://join.slack.com/t/rapids-goai/shared_invite/enQtMjE0Njg5NDQ1MDQxLTViZWFiYTY5MDA4NWY3OWViODg0YWM1MGQ1NzgzNTQwOWI1YjE3NGFlOTVhYjQzYWQ4YjI4NzljYzhiOGZmMGM
https://github.com/rapidsai/rapidsai-staging/issues/RAPIDSai@googlegroups.com
https://twitter.com/rapidsai
https://stackoverflow.com/tags/rapids
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Easy Installation
Interactive Installation Guide 

https://rapids.ai/start.html

https://rapids.ai/start.html
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Explore: RAPIDS Github

https://github.com/rapidsai 

https://github.com/rapidsai


THANK YOU

John Zedlewski
jzedlewski@nvidia.com

@Zstats

@RAPIDSai

mailto:jzedlewski@nvidia.com

