To Waffinity and Be
A Scalable Architecture
Parallelization of File Sy:

Matthew Curtis-Maury, PhD
Vinay Devadas, PhD P
Vania Fang ot
Aditya Kulkarni

NetApp, Inc

1 NetApp

Background

= Data ONTAP is a storage operating system

= WAFL File System processes operations in the
form of messages

= Competitive performance requires CPU scaling
= WAFL is millions of lines of complicated code
= A pure locking model is impractical

= Many other techniques in the literature
= Barrelfish, fos, Corey, Multikernel, ...

i NetApp

WAFL Parallelization Overview

= |[n the beginning... WAFL processed all messages sequentially

= WAFL parallelism leverages data partitioning

= Set of techniques to allow incremental parallelization
= Classical Waffinity — Partition user files into chunks
= Hierarchical Waffinity — Partition many FS data structures
= Hybrid Waffinity — Add locking within the data partition framework

= These techniques have been implemented in our production OS
and deployed on >200K systems

3 i NetApp

Classical Waffinity (20006)

Partition user files into fixed-size chunks called file stripes
Rotated over a set of message queues called Stripe affinities
Affinity scheduler dynamically assigns affinities to threads
Include a Serial affinity to process work outside of file stripes

User file

4 © 2016 NetApp, Inc. All rights reserved.

Hierarchical Waffinity (2011)

5

dras ST

File system Hierarchy Affinity Hierarchy

Hierarchical data partitioning to match hierarchical data
= Particular shape fine-tuned for WAFL
= Hierarchical permissions / exclusion

Allows parallelization of work that used to run in Serial affinity
Friendly to incremental parallelization

i NetApp

© 2016 NetApp, Inc. All rights reserved.

Hierarchical Waffinity — Data mappings

Parallelism between different volumes and aggregates

Parallelism between user file and metafile accesses

o Stripe~affinities (now per volume)
User data Metadata

6 © 2016 NetApp, Inc. All rights reserved. " NetApp

Aggregate |
| Aggregate VBN

Volume VBN AVBN Range

Classical vs. Hierarchical Waffinity

v
[Stripe [VVBN Rangeu

SFS2008

160 T

Throughput
(K ops/sec)

Classical Waffinity Hierarchical Waffinity

= SFS2008 contains metadata operations (Create, Remove, etc)
= Classical Waffinity: Ran in Serial affinity (48% of wallclock time)
= Hierarchical Waffinity allows the messages to run in Volume Logical

= ~3 additional cores used translated into a 23% throughput increase

7 © 2016 NetApp, Inc. All rights reserved. " NetApp

Hierarchical Waffinity CPU Scaling

N
o

—
(6)

Core Usage
S

5 .

1 7

o1
1 2 3 4) 6 7 38
-8—RandomRead —4—SequentialRead RandomWrite
SequentialWrite ——SFS2008 ——-SPC1

= 95% average core occupancy across 6 key workloads

i NetApp

Hybrid Waffinity (2016)

= Some important workloads access two different file blocks
= Mappings optimized for traditional cases not well-suited here

= Hybrid Waffinity combines partitioning with fine-grained locking
= Particular blocks are protected with locking from multiple affinities
= Continues to allow incremental development

User Data
User Data
Serial Serial
User Data + Metadata —t
Lock-free Metadata | Aggregate [
Volume Aggregate VBN Vel | ﬁ.ggregate VBN
T ~ o~
Volume Logical| [Volume VBN AVBN Range J Volume Logical|| Volume VBN AVBN Range J
v v v v

_ VVBN Range | Stripe |l[VVBN Range |

9 i NetApp

Hybrid vs. Hierarchical Waffinity

10

[Volume |/

olume Logica
A 4

Aggregate VBN
AVBN Ranel

[Stipe |/ NVBNIREGE]

—
a O
o O
o O

0

Throughput (MB/s)

2000 T
1500 ¥

Sequential Overwrite

1 2 3 Z 5 6 7 8 9
B Hierarchical Waffinity ® Hybrid Waffinity

= Block free operations in Volume VBN for two metafile accesses
= Hybrid Waffinity parallelizes it further into VVBN Range
= 6 additional cores translated into a 91% throughput increase

i NetApp

Conclusion

= Developed a set of techniques to allow incremental parallelization
of the WAFL file system

= Focused on data partitioning
= Selectively added in locking in a restricted way

= Provided insight into the internals of WAFL

i NetApp

11

12 © 2016 NetApp, Inc. All rights reserved

History of Parallelism in ONTAP

= Data ONTAP was created for single-CPU systems of 1994

= Parallelism via “Coarse-grained Symmetric Multi-processing”

= Each subsystem was assigned to a single-threaded domain
= Minimal explicit locking required, message passing between domains

= Scaled to 4 cores, but all of WAFL serialized

RAID WAFL Network Storage Protocol

piid | HH iR | e | FEES

o
cpus| | ¢ [% | ¢

13 i NetApp

Example Scheduler State

Affinity Hierarchy

SERIAL

AGGR1

VOLA1 VOL2 OoL3

LOG VVBN

R —

S3 $VVR1 VVR2

@ Excluded affinity

VLOG

;-

1
;VVBN AVR
‘® 0@

VVR1 VVR2 S1 S2

33'1 K

3 Running affinity * Runnable affinity

= Scheduler keeps FIFO list of runnable affinities
= Threads call into Affinity scheduler for work

Hierarchical Scheduler

/ Idle threads
1

+

Runpable affinities

\

~

-G

[S3].>[WR2]->[AVBN

)

= Work in coarse affinities starves the system of runnable affinities

14

i NetApp

Example Affinity Mappings

Volume Logical
Remove: A
W: A[100..200]

A S~

Stripe0 Stripe1
W: A[100] W: A[200]

Volume
Remove: V
W: A, MD
Volume VBN
Create: MD
W: MD[10..20]
Stripe2 VVRO VVR1
W: B[100] W: MDJ[20] W: MD[10]
R: A[300] R: MDJ[20] R: MD[10]

R: B[200] R: A[200]

Development Experiences

= Hierarchical Waffinity
= Parallelization occurs at the message granularity, changed O(hundreds) LoC
= Only parallelize critical messages, in common paths, and to a suitable affinity
= |nfrastructure required 22k LoC

= Hybrid Waffinity
= Infrastructure for each access mode was ~3k LoC
= Using Eject and Insert is easy, fewer than 20 lines per message optimized
= Write involves updating and restructuring message handler -> 2k LoC
= Now applying to Inodes with modest code changes

16 i NetApp

