To Waffinity and Be
A Scalable Architecture
Parallelization of File Sy:

Matthew Curtis-Maury, PhD
Vinay Devadas, PhD P
Vania Fang ot
Aditya Kulkarni

NetApp, Inc

1 NetApp



Background

= Data ONTAP is a storage operating system

= WAFL File System processes operations in the
form of messages

= Competitive performance requires CPU scaling
= WAFL is millions of lines of complicated code
= A pure locking model is impractical

= Many other techniques in the literature
= Barrelfish, fos, Corey, Multikernel, ...
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WAFL Parallelization Overview

= |[n the beginning... WAFL processed all messages sequentially

= WAFL parallelism leverages data partitioning

= Set of techniques to allow incremental parallelization
= Classical Waffinity — Partition user files into chunks
= Hierarchical Waffinity — Partition many FS data structures
= Hybrid Waffinity — Add locking within the data partition framework

= These techniques have been implemented in our production OS
and deployed on >200K systems
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Classical Waffinity (20006)

Partition user files into fixed-size chunks called file stripes
Rotated over a set of message queues called Stripe affinities
Affinity scheduler dynamically assigns affinities to threads
Include a Serial affinity to process work outside of file stripes

User file
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Hierarchical Waffinity (2011)
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File system Hierarchy Affinity Hierarchy

Hierarchical data partitioning to match hierarchical data
= Particular shape fine-tuned for WAFL
= Hierarchical permissions / exclusion

Allows parallelization of work that used to run in Serial affinity
Friendly to incremental parallelization
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Hierarchical Waffinity — Data mappings

Parallelism between different volumes and aggregates

Parallelism between user file and metafile accesses

o Stripe~affinities (now per volume)
User data Metadata
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= SFS2008 contains metadata operations (Create, Remove, etc)
= Classical Waffinity: Ran in Serial affinity (48% of wallclock time)
= Hierarchical Waffinity allows the messages to run in Volume Logical

= ~3 additional cores used translated into a 23% throughput increase

7 © 2016 NetApp, Inc. All rights reserved. " NetApp



Hierarchical Waffinity CPU Scaling
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= 95% average core occupancy across 6 key workloads
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Hybrid Waffinity (2016)

= Some important workloads access two different file blocks
= Mappings optimized for traditional cases not well-suited here

= Hybrid Waffinity combines partitioning with fine-grained locking
= Particular blocks are protected with locking from multiple affinities
= Continues to allow incremental development
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Hybrid vs. Hierarchical Waffinity
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= Block free operations in Volume VBN for two metafile accesses
= Hybrid Waffinity parallelizes it further into VVBN Range
= 6 additional cores translated into a 91% throughput increase
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Conclusion

= Developed a set of techniques to allow incremental parallelization
of the WAFL file system

= Focused on data partitioning
= Selectively added in locking in a restricted way

= Provided insight into the internals of WAFL
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History of Parallelism in ONTAP

= Data ONTAP was created for single-CPU systems of 1994

= Parallelism via “Coarse-grained Symmetric Multi-processing”

= Each subsystem was assigned to a single-threaded domain
= Minimal explicit locking required, message passing between domains

= Scaled to 4 cores, but all of WAFL serialized

RAID WAFL Network Storage Protocol
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Example Scheduler State

Affinity Hierarchy
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3 Running affinity * Runnable affinity

= Scheduler keeps FIFO list of runnable affinities
= Threads call into Affinity scheduler for work

Hierarchical Scheduler
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= Work in coarse affinities starves the system of runnable affinities
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Example Affinity Mappings

Volume Logical
Remove: A
W: A[100..200]

A S~

Stripe0 Stripe1
W: A[100] W: A[200]

Volume
Remove: V
W: A, MD
Volume VBN
Create: MD
W: MD[10..20]
Stripe2 VVRO VVR1
W: B[100] W: MDJ[20] W: MD[10]
R: A[300] R: MDJ[20] R: MD[10]

R: B[200] R: A[200]




Development Experiences

= Hierarchical Waffinity
= Parallelization occurs at the message granularity, changed O(hundreds) LoC
= Only parallelize critical messages, in common paths, and to a suitable affinity
= |nfrastructure required 22k LoC

= Hybrid Waffinity
= Infrastructure for each access mode was ~3k LoC
= Using Eject and Insert is easy, fewer than 20 lines per message optimized
= Write involves updating and restructuring message handler -> 2k LoC
= Now applying to Inodes with modest code changes
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