To Waffinity and Beyond: A Scalable Architecture for Incremental Parallelization of File System Code

Matthew Curtis-Maury, PhD Vinay Devadas, PhD Vania Fang Aditya Kulkarni

NetApp, Inc

Background

- Data ONTAP is a storage operating system
- WAFL File System processes operations in the form of messages
- Competitive performance requires CPU scaling
 - WAFL is millions of lines of complicated code
 - A pure locking model is impractical
 - Many other techniques in the literature
 - Barrelfish, fos, Corey, Multikernel, ...

WAFL Parallelization Overview

- In the beginning... WAFL processed all messages sequentially
- WAFL parallelism leverages data partitioning
- Set of techniques to allow incremental parallelization
 - Classical Waffinity Partition user files into chunks
 - Hierarchical Waffinity Partition many FS data structures
 - Hybrid Waffinity Add locking within the data partition framework
- These techniques have been implemented in our production OS and deployed on >200K systems

Classical Waffinity (2006)

- Partition user files into fixed-size chunks called file stripes
- Rotated over a set of message queues called Stripe affinities
- Affinity scheduler dynamically assigns affinities to threads
- Include a Serial affinity to process work outside of file stripes

Hierarchical Waffinity (2011)

- Hierarchical data partitioning to match hierarchical data
 - Particular shape fine-tuned for WAFL
 - Hierarchical permissions / exclusion
- Allows parallelization of work that used to run in Serial affinity
- Friendly to incremental parallelization

Hierarchical Waffinity – Data mappings

Parallelism between different volumes and aggregates

Classical vs. Hierarchical Waffinity

- SFS2008 contains metadata operations (Create, Remove, etc)
 - Classical Waffinity: Ran in Serial affinity (48% of wallclock time)
 - Hierarchical Waffinity allows the messages to run in Volume Logical
- ~3 additional cores used translated into a 23% throughput increase

Hierarchical Waffinity CPU Scaling

95% average core occupancy across 6 key workloads

Hybrid Waffinity (2016)

- Some important workloads access two different file blocks
 - Mappings optimized for traditional cases not well-suited here
- Hybrid Waffinity combines partitioning with fine-grained locking
 - Particular blocks are protected with locking from multiple affinities
 - Continues to allow incremental development

Metadata User Data + Metadata Volume Volume VBN Avbn Range Stripe VVBN Range

Hybrid vs. Hierarchical Waffinity

- Block free operations in Volume VBN for two metafile accesses
- Hybrid Waffinity parallelizes it further into VVBN Range
- 6 additional cores translated into a 91% throughput increase

Conclusion

- Developed a set of techniques to allow incremental parallelization of the WAFL file system
 - Focused on data partitioning
 - Selectively added in locking in a restricted way
- Provided insight into the internals of WAFL

History of Parallelism in ONTAP

- Data ONTAP was created for single-CPU systems of 1994
- Parallelism via "Coarse-grained Symmetric Multi-processing"
 - Each subsystem was assigned to a single-threaded domain
 - Minimal explicit locking required, message passing between domains
 - Scaled to 4 cores, but all of WAFL serialized

Example Scheduler State

Hierarchical Scheduler

- Scheduler keeps FIFO list of runnable affinities
- Threads call into Affinity scheduler for work
- Work in coarse affinities starves the system of runnable affinities

Example Affinity Mappings

Development Experiences

Hierarchical Waffinity

- Parallelization occurs at the message granularity, changed O(hundreds) LoC
- Only parallelize critical messages, in common paths, and to a suitable affinity
- Infrastructure required 22k LoC

Hybrid Waffinity

- Infrastructure for each access mode was ~3k LoC
- Using Eject and Insert is easy, fewer than 20 lines per message optimized
- Write involves updating and restructuring message handler -> 2k LoC
- Now applying to Inodes with modest code changes

