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Motivation: Big data analytics on sensitive data
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Goal: Outsource big data analytics

* Store database at a cloud provider
* Perform analytical queries remotely

* Problem: Rogue cloud admins or hackers could have access to data

* Sensitive information can be exposed



Prior work: Encrypted databases
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e What can we do?

e Use encryption!
* Examples: CryptDB/Monomi [SOSP11, VLDB13], MS SQL Server [SQL16]
e These support SQL queries on encrypted data



Encrypted databases — Challenges
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Cost of addition (single core)

e Challenge 1: Performance
* Aggregations on encrypted data are slower
e Ciphertext addition is > 3000x slower than plaintext
e Adding 100 million values takes 6 minutes instead of 100ms
* Not good for big data!

More coffee breaks!



Encrypted databases — Challenges
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e Challenge 2: Security
* Encrypted databases use cryptographic schemes with weaker guarantees
* Example: deterministic encryption (DET) reveals equality
* Recent attack [CCS15] recovered > 60% from certain DET columns



Our approach
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ASHE

SPLASHE

Goal 1: Improve performance

* ASHE — New cryptographic scheme that allows fast aggregation on encrypted data

Goal 2: Improve security

» SPLASHE: DB transformation that enables more queries without using weaker crypto



Seabed: Big data analytics for encrypted datasets

SEABED
Analyst

SPLASHE

* We built Seabed on top of Spark
* Seabed leverages ASHE and SPLASHE

e Seabed runs SQL queries on encrypted data

* Examples: Group-by queries and aggregations (sum, average, variance)

* Seabed is fast enough for big data
* Up to 100x faster than previous systems
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Why is aggregation slow in encrypted databases?
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* We need to sum up encrypted data

* This is impossible with schemes like AES

* We need an additively homomorphic cryptosystem

* Example: Paillier encryption [EUROCRYPT99]
* Enc(x;) @ Enc(x,) = Enc(xy + x3)



Why is aggregation slow in encrypted databases?

Plaintext DB Encrypted DB
12 439856 _
4 Integer 582650 HomorT]?rph'C
addition addition
1 + 143759 =
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* Most homomorphic cryptosystems are expensive!

* Example: Paillier ciphertexts need to be 2048-bit
* Homomorphic addition: Enc(x;) @ Enc(x,) = Enc(xy) * Enc(x,)
e >3000x slower than plain addition
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Can we have faster homomorphic cryptosystems?
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* But why does Paillier have so large ciphertexts?

* Because it is an asymmetric scheme based on large integers
* Encrypt with public key — decrypt with private key

* Do we need asymmetric crypto in outsourced databases?

* Analysts and data collector usually work for the same organization
* We could use fast symmetric crypto!
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ASHE — Additive Symmetric Homomorphic Encryption

Plaintext DB Encrypted DB Encrypted DB
o poyment
12 12+439 = 1 12+F(1)
4 - 4-56 - 2 4+FQ2) =
1 1+379&= 3 1+FQ3)&=
15 15+763 &= 4  15+F(4)
Sum =32 + 1525 Sum =32 + 1525
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* Encrypt by masking values with random numbers
* ASHE is semantically secure (IND-CPA)

* No need to remember random numbers
* Use pseudorandom function F(ID)

» ASHE ciphertexts are 32/64-bit integers N

* Homomorphic addition only takes a few nanoseconds!



ASHE — Optimizations
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AES-NI
* Challenge: Aggregation and decryption cost depends on ID list length

* Optimizations:
* Optimize encryption so that the randomness cancels out for consecutive IDs
* Fast evaluation of pseudorandom function via AES-NI
e Compression techniques to make ID list as small as possible

e Qutcome: ASHE enables fast aggregation even when the DB is very large
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Outline

* Improving security <:I
 SPLASHE

* System design

e Evaluation
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Why are encrypted databases vulnerable?
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e Some columns use deterministic encryption (DET)

* This leaks the distribution of values
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Auxiliary information
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h4589h = female
sfbg43qg = male

* An adversary with auxiliary information can do a frequency attack [CCS15]
* Inthe example, the gender is revealed
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How can we avoid deterministic encryption?

SELECT sum (revenue)
FROM purchases
WHERE gender = “female”

gender payment gender gender payment | payment
female male female male

Alice female %Th6j& . 476529: - 459220 - 4398560~ 314437
Bob male 4 Fig893n - 956204 953265~ 5826500 207465 =
Charlie female 1 %gTHR3( - 529482¢ - 234599( - 143759( 958922 =
Deborah female 15 34%Mdb (- 459283~ 562087~ 874563 9963240

g

Support single-table aggregation queries without DET
SPLASHE: Transform DB schema to avoid DET

* Answer single-table aggregation queries using additions only

Some storage overhead
* Reduced by Enhanced SPLASHE (see paper)
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Seabed — System design

Analyst

SEABED Proxy

 We implemented Seabed on top of unmodified Spark
* ASHE and SPLASHE implemented in Scala

* Seabed’s high-level design is similar to CryptDB’s

e Accepts SQL queries; transparently answers them on encrypted data
» Client proxy handles encryption/decryption
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Outline

e Evaluation -
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Evaluation: Questions

* End-to-end latency of aggregation?

e Storage overhead of SPLASHE?

* End-to-end latency in Bing Ads analytics?
 How scalable is aggregation?

* How effective are Seabed’s optimizations?
* Latency of group-by queries?

 Latency of batch queries (Big Data Benchmark)?

Experimental setup:
e Spark with 100 cores
* On MS Azure

* Memory-resident data
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How efficient is ASHE aggregation?
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* Synthetic data: up to 1.75 billion rows - Query: single column aggregation

* Results
e Paillier: up to 16.6 minutes
* No encryption: <1 second
* How does Seabed do?

e Seabed is 100x faster than Paillier, even in the worst case!
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How much storage does SPLASHE need?
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Dataset

e 760M rows, real ad-analytics application from Microsoft
We replaced 10 DET columns with SPLASHE, one by one
Measured: Relative size increase vs. plaintext dataset

Results

e SPLASHE has substantial storage cost
* Enhanced SPLASHE reduces this cost by up to 10x

With 10x more storage, we avoid DET entirely!
* Reduces risk of information leaks
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How efficient is Seabed for real-world applications?
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e Same ad-analytics application from Microsoft

* Measured: End-to-end latency of 15 queries

e Results

* No encryption is about 10x faster than Paillier across all queries
* Seabed is almost as fast as no encryption (within 15-44%)

 Itis possible to do analytics on encrypted big data!
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Summary

Big-data analytics on encrypted data is difficult

* Key challenges: Performance, security

We introduce additive symmetric homomorphic encryption (ASHE)

* Result: much better performance when analyst and data owner trust each other

We present a schema transformation called SPLASHE

* Result: Often avoids the need for weaker encryption = better security

Seabed: an extension of Spark that uses ASHE and SPLASHE

* Up to 100x faster than previous systems

Seabed is fast enough for real-world big data applications

Any Questions?

’-“w
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