
ASAP: Fast, Approximate Graph
Pattern Mining at Scale

Anand Iyer ⋆, Zaoxing Liu ⬩, Xin Jin ⬩,
Shivaram Venkataraman✢, Vladimir Braverman ⬩, Ion Stoica ⋆

⋆UC Berkeley ⬩Johns Hopkins University ✢University of Wisconsin & Microsoft

OSDI, October 10, 2018

Graphs popular in big data analytics

Social networks

Graphs popular in big data analytics

Metabolic network of a single cell organismSocial networks

Graphs popular in big data analytics

Metabolic network of a single cell organismSocial networks

Tuberculosis

Graphs popular in big data analytics

*“The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing” ,Sahu et. al, VLDB 2018 (best paper)

Also popular in traditional enterprises*

Graphs popular in big data analytics

Products and customers

*“The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing” ,Sahu et. al, VLDB 2018 (best paper)

Also popular in traditional enterprises*

P

P

P

P
P

Graphs popular in big data analytics

Products and customers

*“The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing” ,Sahu et. al, VLDB 2018 (best paper)

Transactions and involved entities

Also popular in traditional enterprises*

P

P

P

P
P

D

D

D

D
D

W

W

D

Graphs popular in big data analytics

Products and customers
Which (classes of) products are
frequently bought together?

*“The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing” ,Sahu et. al, VLDB 2018 (best paper)

Transactions and involved entities

Also popular in traditional enterprises*

P

P

P

P
P

D

D

D

D
D

W

W

D

Graphs popular in big data analytics

Products and customers
Which (classes of) products are
frequently bought together?

*“The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing” ,Sahu et. al, VLDB 2018 (best paper)

Transactions and involved entities

Also popular in traditional enterprises*

Small deposits followed
by large withdrawal

P

P

P

P
P

D

D

D

D
D

W

W

D

Graphs popular in big data analytics

Products and customers
Which (classes of) products are
frequently bought together?

*“The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing” ,Sahu et. al, VLDB 2018 (best paper)

Transactions and involved entities

Also popular in traditional enterprises*

Small deposits followed
by large withdrawal

P

P

P

P
P

P

P

D

D

D

D
D

W

W

D

Graphs popular in big data analytics

Products and customers
Which (classes of) products are
frequently bought together?

*“The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing” ,Sahu et. al, VLDB 2018 (best paper)

Transactions and involved entities

Also popular in traditional enterprises*

Small deposits followed
by large withdrawal

P

P

P

P
P

P

P

D

D

D

D
D

W

W

D

Graph Pattern Mining

Discover structural patterns in the underlying graph

Graph Pattern Mining

Motifs
Cliques

Discover structural patterns in the underlying graph

Frequent Subgraphs

Graph Pattern Mining

Motifs
Cliques

Discover structural patterns in the underlying graph

Frequent Subgraphs

Standard approach: Iterative expansion

Graph Pattern Mining

Motifs
Cliques

Discover structural patterns in the underlying graph

Frequent Subgraphs

0
1

2 3

Standard approach: Iterative expansion

Graph Pattern Mining

Motifs
Cliques

Discover structural patterns in the underlying graph

Frequent Subgraphs

0
1

2 3

0

1

2

3

Standard approach: Iterative expansion

Graph Pattern Mining

Motifs
Cliques

Discover structural patterns in the underlying graph

Frequent Subgraphs

0
1

2 3

0

1

2

3

0 1 0 2 0 3

1 2 1 0

2 3 2 0 2 1

3 1 3 1 3 2

1 3

Standard approach: Iterative expansion

Graph Pattern Mining

Motifs
Cliques

Discover structural patterns in the underlying graph

Frequent SubgraphsHuge intermediate data
Quickly intractable in large graphs

0
1

2 3

0

1

2

3

0 1 0 2 0 3

1 2 1 0

2 3 2 0 2 1

3 1 3 1 3 2

1 3

Standard approach: Iterative expansion

Graph Pattern Mining

Motifs
Cliques

Discover structural patterns in the underlying graph

Frequent SubgraphsHuge intermediate data
Quickly intractable in large graphs

0
1

2 3

0

1

2

3

0 1 0 2 0 3

1 2 1 0

2 3 2 0 2 1

3 1 3 1 3 2

1 3

Standard approach: Iterative expansion

Challenging to mine patterns in large graphs

Graph Pattern Mining
Lo

g
sc

al
e

Edges
Computation Time

Graph Pattern Mining
Lo

g
sc

al
e

Edges
Computation Time

Arabesque
(SOSP ‘15)

Graph Pattern Mining

~1
 b

ill
io

n

11
 h

ou
rs

Motifs with size = 3

Lo
g

sc
al

e

Edges
Computation Time

Arabesque
(SOSP ‘15)

Graph Pattern Mining

15
0

s

1.
5

bi
lli

on

~1
 b

ill
io

n

11
 h

ou
rs

Motifs with size = 3

This work:

Lo
g

sc
al

e

Edges
Computation Time

Arabesque
(SOSP ‘15)

Graph Pattern Mining

15
0

s

1.
5

bi
lli

on

~1
 b

ill
io

n

11
 h

ou
rs

Motifs with size = 3

This work:

Lo
g

sc
al

e

Edges
Computation Time

Arabesque
(SOSP ‘15)

258x faster

Graph Pattern Mining

15
0

s

1.
5

bi
lli

on

~1
 b

ill
io

n

11
 h

ou
rs

Motifs with size = 3

This work:

Lo
g

sc
al

e

Edges
Computation Time

Arabesque
(SOSP ‘15)

258x faster
5x less CPU
& Memory

Graph Pattern Mining

15
0

s

1.
5

bi
lli

on

~1
 b

ill
io

n

11
 h

ou
rs

Motifs with size = 3

This work:

Lo
g

sc
al

e

Edges
Computation Time

Arabesque
(SOSP ‘15)

258x faster
5x less CPU
& Memory
<5% error

Many mining tasks do not need exact answers

Leverage approximation for pattern mining

Many mining tasks do not need exact answers

General approach: Apply algorithm on
subset(s) (sample) of the input data

Approximate Analytics

General approach: Apply algorithm on
subset(s) (sample) of the input data

Approximate Analytics

0

1 4

2 3

graph

General approach: Apply algorithm on
subset(s) (sample) of the input data

Approximate Analytics

0

1 4

2 3

edge sampling
(p=0.5)

graph

0

1 4

2 3

General approach: Apply algorithm on
subset(s) (sample) of the input data

Approximate Analytics

0

1 4

2 3

edge sampling
(p=0.5)

graph

e = 1

0

1 4

2 3

triangle
counting

General approach: Apply algorithm on
subset(s) (sample) of the input data

Approximate Analytics

0

1 4

2 3

edge sampling
(p=0.5)

graph

e = 1

0

1 4

2 3

triangle
counting

result

$ % 2 = 2

Answer: 10

General approach: Apply algorithm on
subset(s) (sample) of the input data

Approximate Analytics

0

1 4

2 3

edge sampling
(p=0.5)

graph

e = 1

0

1 4

2 3

triangle
counting

result

$ % 2 = 2

Answer: 10

General approach: Apply algorithm on
subset(s) (sample) of the input data

Approximate Analytics

0

1 4

2 3

edge sampling
(p=0.5)

graph

e = 1

0

1 4

2 3

triangle
counting

result

$ % 2 = 2

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12
Er
ro
r
(%
)

Sp
ee
du
p

Edges Dropped (%)

Error
Speedup

Answer: 10

General approach: Apply algorithm on
subset(s) (sample) of the input data

Approximate Analytics

0

1 4

2 3

edge sampling
(p=0.5)

graph

e = 1

0

1 4

2 3

triangle
counting

result

$ % 2 = 2

Applying exact algorithm on sampled graph(s)
not the right approach for pattern mining

ASAP leverages existing work in graph
approximation theory and makes it practical

Graph Pattern Mining Theory
Sample instances of the pattern from the graph stream

Graph Pattern Mining Theory

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Sample instances of the pattern from the graph stream

E0

Graph Pattern Mining Theory

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Sample instances of the pattern from the graph stream

E0

Graph Pattern Mining Theory

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Sample instances of the pattern from the graph stream

E0

Graph Pattern Mining Theory

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Sample instances of the pattern from the graph stream

E0

Graph Pattern Mining Theory

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Sample instances of the pattern from the graph stream

E0

Graph Pattern Mining Theory

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Sample instances of the pattern from the graph stream

E0

Graph Pattern Mining Theory

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Sample instances of the pattern from the graph stream

E0

Graph Pattern Mining Theory

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Sample instances of the pattern from the graph stream

E0

Graph Pattern Mining Theory

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Sample instances of the pattern from the graph stream

E0

Graph Pattern Mining Theory

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Sample instances of the pattern from the graph stream

E0

Graph Pattern Mining Theory

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Sample instances of the pattern from the graph stream

E0

Graph Pattern Mining Theory

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Sample instances of the pattern from the graph stream

! = 1
10 ∗

1
4

E0

Graph Pattern Mining Theory

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Sample instances of the pattern from the graph stream

! = 1
10 ∗

1
4

E0

Graph Pattern Mining Theory

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

'(= 40

Sample instances of the pattern from the graph stream

! = 1
10 ∗

1
4

E0

Graph Pattern Mining Theory

0

1 4

2 3

graph

E1

E2

E3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

'(= 40

Sample instances of the pattern from the graph stream

! = 1
10 ∗

1
4

E0

Graph Pattern Mining Theory

0

1 4

2 3

graph

E1

E2

E3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

'(= 40

result

1
)*
+,(

-./
'+ = 10'/ = 0

'0 = 0

'1 = 0

Sample instances of the pattern from the graph stream

! = 1
10 ∗

1
4

E0

Graph Pattern Mining Theory

0

1 4

2 3

estimator
(r=4)

neighborhood
sampling

graph

E1

E2

E3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

'(= 40

result

1
)*
+,(

-./
'+ = 10'/ = 0

'0 = 0

'1 = 0

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Sample instances of the pattern from the graph stream

A Swift Approximate Pattern miner

graphA.patterns(“a->b->c”, “100s”)
graphB.fourClique(“5.0%”,“95.0%”)

1
A Swift Approximate Pattern miner

…

G
ra

ph
s

st
or

ed
 o

n
di

sk

or
 m

ai
n

m
em

or
y

graphA.patterns(“a->b->c”, “100s”)
graphB.fourClique(“5.0%”,“95.0%”)

1

Apache Spark

Generalized Approximate
Pattern Mining

2

A Swift Approximate Pattern miner

…

G
ra

ph
s

st
or

ed
 o

n
di

sk

or
 m

ai
n

m
em

or
y

graphA.patterns(“a->b->c”, “100s”)
graphB.fourClique(“5.0%”,“95.0%”)

1

Estimator Count Selection
3 Apache Spark

Generalized Approximate
Pattern Mining

2

A Swift Approximate Pattern miner

…

G
ra

ph
s

st
or

ed
 o

n
di

sk

or
 m

ai
n

m
em

or
y

graphA.patterns(“a->b->c”, “100s”)
graphB.fourClique(“5.0%”,“95.0%”)

1

Estimator Count Selection
3

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a
te

 (
%

)

No. of Estimators

Twitter Graph Profiling

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a

te
 (

%
)

No. of Estimators

Twitter Graph Profiling

4

Apache Spark

Generalized Approximate
Pattern Mining

2

A Swift Approximate Pattern miner

…

G
ra

ph
s

st
or

ed
 o

n
di

sk

or
 m

ai
n

m
em

or
y

graphA.patterns(“a->b->c”, “100s”)
graphB.fourClique(“5.0%”,“95.0%”)

1

Estimator Count Selection
3

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a
te

 (
%

)

No. of Estimators

Twitter Graph Profiling

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a

te
 (

%
)

No. of Estimators

Twitter Graph Profiling

4
Er

ro
r-

La
te

nc
y

Pr
of

ile
(E

LP
)

5

Apache Spark

Generalized Approximate
Pattern Mining

2

A Swift Approximate Pattern miner

…

G
ra

ph
s

st
or

ed
 o

n
di

sk

or
 m

ai
n

m
em

or
y

graphA.patterns(“a->b->c”, “100s”)
graphB.fourClique(“5.0%”,“95.0%”)

1

Estimator Count Selection
3

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a
te

 (
%

)

No. of Estimators

Twitter Graph Profiling

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a

te
 (

%
)

No. of Estimators

Twitter Graph Profiling

4

Estimates:{error: <5%, time: 95s}
Estimates:{error: <5%, time: 60s}

6

Er
ro

r-
La

te
nc

y
Pr

of
ile

(E
LP

)

5

Apache Spark

Generalized Approximate
Pattern Mining

2

A Swift Approximate Pattern miner

…

G
ra

ph
s

st
or

ed
 o

n
di

sk

or
 m

ai
n

m
em

or
y

graphA.patterns(“a->b->c”, “100s”)
graphB.fourClique(“5.0%”,“95.0%”)

1

Estimator Count Selection
3

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a
te

 (
%

)

No. of Estimators

Twitter Graph Profiling

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a

te
 (

%
)

No. of Estimators

Twitter Graph Profiling

4

Estimates:{error: <5%, time: 95s}
Estimates:{error: <5%, time: 60s}

6

count: 21453 +/- 14
confidence: 95%,

time: 92s

Embeddings (optional)

7

Er
ro

r-
La

te
nc

y
Pr

of
ile

(E
LP

)

5

Apache Spark

Generalized Approximate
Pattern Mining

2

A Swift Approximate Pattern miner

Graph updates

…

…

G
ra

ph
s

st
or

ed
 o

n
di

sk

or
 m

ai
n

m
em

or
y

graphA.patterns(“a->b->c”, “100s”)
graphB.fourClique(“5.0%”,“95.0%”)

1

Estimator Count Selection
3

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a
te

 (
%

)

No. of Estimators

Twitter Graph Profiling

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a

te
 (

%
)

No. of Estimators

Twitter Graph Profiling

4

Estimates:{error: <5%, time: 95s}
Estimates:{error: <5%, time: 60s}

6

count: 21453 +/- 14
confidence: 95%,

time: 92s

Embeddings (optional)

7

Er
ro

r-
La

te
nc

y
Pr

of
ile

(E
LP

)

5

Apache Spark

Generalized Approximate
Pattern Mining

2

A Swift Approximate Pattern miner

Er
ro

r-
La

te
nc

y
Pr

of
ile

(E
LP

)

Apache Spark

Generalized Approximate
Pattern Mining

graphA.patterns(“a->b->c”, “100s”)
graphB.fourClique(“5.0%”,“95.0%”)

Estimator Count Selection

…

G
ra

ph
s

st
or

ed
 o

n
di

sk

or
 m

ai
n

m
em

or
y

Estimates:{error: <5%, time: 95s}
Estimates:{error: <5%, time: 60s}

…

Graph updates

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a
te

 (
%

)

No. of Estimators

Twitter Graph Profiling

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a

te
 (

%
)

No. of Estimators

Twitter Graph Profiling

count: 21453 +/- 14
confidence: 95%,

time: 92s

Embeddings (optional)

1

3

4

6 7

5

2

Er
ro

r-
La

te
nc

y
Pr

of
ile

(E
LP

)

Apache Spark

Generalized Approximate
Pattern Mining

graphA.patterns(“a->b->c”, “100s”)
graphB.fourClique(“5.0%”,“95.0%”)

Estimator Count Selection

…

G
ra

ph
s

st
or

ed
 o

n
di

sk

or
 m

ai
n

m
em

or
y

Estimates:{error: <5%, time: 95s}
Estimates:{error: <5%, time: 60s}

…

Graph updates

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a
te

 (
%

)

No. of Estimators

Twitter Graph Profiling

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a

te
 (

%
)

No. of Estimators

Twitter Graph Profiling

count: 21453 +/- 14
confidence: 95%,

time: 92s

Embeddings (optional)

1

3

4

6 7

5

2

Contributions:
• Extends neighborhood sampling to general patterns
• Provides a unified API
• Applies approximate pattern mining in distributed settings

Generalized Approximate Pattern Mining

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

Developers write a single estimator using ASAP’s API

Generalized Approximate Pattern Mining

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

Developers write a single estimator using ASAP’s API

Generalized Approximate Pattern Mining

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

Developers write a single estimator using ASAP’s API

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

4

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

4

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

4

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

4

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

4

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

4

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

4

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

4

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

4

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

4

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

4

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

4

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

4

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

4

!" = 40

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

4

Sampling phase fixes the vertices for a particular instance of a pattern
and closing phase waits for remaining edges

!" = 40

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

4

Sampling phase fixes the vertices for a particular instance of a pattern
and closing phase waits for remaining edgesASAP computes the right expectations, runs many

instances of the estimator and aggregates results

!" = 40

Using ASAP’s API

0

1 4

2 3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Under submission. Please do not distribute.

API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

0

3

4

See paper for more examples & proof

Sampling phase fixes the vertices for a particular instance of a pattern
and closing phase waits for remaining edgesASAP computes the right expectations, runs many

instances of the estimator and aggregates results

!" = 40

Applying to Distributed Settings

graph

Applying to Distributed Settings

graph

subgraph
0

partial count c0
(using r estimators)

subgraph
1

partial count c1
(using r estimators)

subgraph
2

partial count c2
(using r estimators)

Applying to Distributed Settings

graph

map: w(=3) workers

subgraph
0

partial count c0
(using r estimators)

subgraph
1

partial count c1
(using r estimators)

subgraph
2

partial count c2
(using r estimators)

Applying to Distributed Settings

graph

map: w(=3) workers

subgraph
0

partial count c0
(using r estimators)

subgraph
1

partial count c1
(using r estimators)

subgraph
2

partial count c2
(using r estimators)

Applying to Distributed Settings

graph !
"#$

%&'
("

map: w(=3) workers

subgraph
0

partial count c0
(using r estimators)

subgraph
1

partial count c1
(using r estimators)

subgraph
2

partial count c2
(using r estimators)

Applying to Distributed Settings

graph !
"#$

%&'
("

map: w(=3) workers reduce

subgraph
0

partial count c0
(using r estimators)

subgraph
1

partial count c1
(using r estimators)

subgraph
2

partial count c2
(using r estimators)

Applying to Distributed Settings

graph !
"#$

%&'
("

map: w(=3) workers reduce

subgraph
0

partial count c0
(using r estimators)

subgraph
1

partial count c1
(using r estimators)

subgraph
2

partial count c2
(using r estimators)

Random Vertex-cut Partitioning

Applying to Distributed Settings

graph !
"#$

%&'
("

map: w(=3) workers reduce

subgraph
0

partial count c0
(using r estimators)

subgraph
1

partial count c1
(using r estimators)

subgraph
2

partial count c2
(using r estimators)

)(+)

Random Vertex-cut Partitioning

Applying to Distributed Settings

graph !
"#$

%&'
("

map: w(=3) workers reduce

subgraph
0

partial count c0
(using r estimators)

subgraph
1

partial count c1
(using r estimators)

subgraph
2

partial count c2
(using r estimators)

Upper bounds on f(w) can be proved using
Hajnal-Szemerédi theorem

)(+)

Random Vertex-cut Partitioning

Er
ro

r-
La

te
nc

y
Pr

of
ile

(E
LP

)

Apache Spark

Generalized Approximate
Pattern Mining

graphA.patterns(“a->b->c”, “100s”)
graphB.fourClique(“5.0%”,“95.0%”)

Estimator Count Selection

…

G
ra

ph
s

st
or

ed
 o

n
di

sk

or
 m

ai
n

m
em

or
y

Estimates:{error: <5%, time: 95s}
Estimates:{error: <5%, time: 60s}

…

Graph updates

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a
te

 (
%

)

No. of Estimators

Twitter Graph Profiling

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a

te
 (

%
)

No. of Estimators

Twitter Graph Profiling

count: 21453 +/- 14
confidence: 95%,

time: 92s

Embeddings (optional)

1

3

4

6 7

5

2

Er
ro

r-
La

te
nc

y
Pr

of
ile

(E
LP

)

Apache Spark

Generalized Approximate
Pattern Mining

graphA.patterns(“a->b->c”, “100s”)
graphB.fourClique(“5.0%”,“95.0%”)

Estimator Count Selection

…

G
ra

ph
s

st
or

ed
 o

n
di

sk

or
 m

ai
n

m
em

or
y

Estimates:{error: <5%, time: 95s}
Estimates:{error: <5%, time: 60s}

…

Graph updates

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a
te

 (
%

)

No. of Estimators

Twitter Graph Profiling

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u

n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a

te
 (

%
)

No. of Estimators

Twitter Graph Profiling

count: 21453 +/- 14
confidence: 95%,

time: 92s

Embeddings (optional)

1

3

4

6 7

5

2

Contribution:
• Novel way to build ELP very fast without the need to know

the ground truth or running mining on the full graph.

Building Error-Latency Profile
Given a time / error bound, how many estimators
should ASAP use?

Building Error-Latency Profile
Given a time / error bound, how many estimators
should ASAP use?

Number of estimators

Ti
m

e

Time vs Estimators

Building Error-Latency Profile
Given a time / error bound, how many estimators
should ASAP use?

Number of estimators

Ti
m

e

Time vs Estimators

Er
ro

r

Number of estimators

Error vs Estimators

Building Estimators vs Time Profile
Time complexity linear in number of estimators

Building Estimators vs Time Profile

1

2

3

0.5M 1M 1.5M 2M

R
u
n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph

Time complexity linear in number of estimators

Building Estimators vs Time Profile

1

2

3

0.5M 1M 1.5M 2M

R
u
n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph

Time complexity linear in number of estimators

ASAP sets a profiling cost and picks maximum
points within the budget

Building Estimators vs Time Profile

1

2

3

0.5M 1M 1.5M 2M

R
u
n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph

Time complexity linear in number of estimators

1

2

3

0 0.5M 1M 1.5M 2.1M

R
u
n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph Profiling

Building Estimators vs Error Profile

 0
 5

 10
 15
 20
 25
 30
 35
 40

50k 1m 1.5m 2.1m

E
rr

o
r

R
a
te

 (
%

)

No. of Estimators

Twitter Graph

Error complexity non-linear in number of estimators

Building Estimators vs Error Profile

 0
 5

 10
 15
 20
 25
 30
 35
 40

50k 1m 1.5m 2.1m

E
rr

o
r

R
a
te

 (
%

)

No. of Estimators

Twitter Graph

Error complexity non-linear in number of estimators

Key idea: Use a very small sample of the graph to build
the ELP
§ Chernoff analysis provides a loose upper bound on the

number of estimators.
§ In small graphs, a large number of estimators can get us very

close to ground truth.

Building Estimators vs Error Profile

 0
 5

 10
 15
 20
 25
 30
 35
 40

50k 1m 1.5m 2.1m

E
rr

o
r

R
a
te

 (
%

)

No. of Estimators

Twitter Graph

Error complexity non-linear in number of estimators

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 0.5m 1m 1.5m 2.1m

E
rr

o
r

R
a

te
 (

%
)

No. of Estimators

Twitter Graph Profiling

Advanced Mining
Predicate Matching
• Find patterns where vertices are of type “electronics”
• ASAP allows simple edge and vertex predicates

Motif Mining
• Some patterns are building blocks for other patterns
• ASAP caches state of the estimators and reuses them

Accuracy Refinement
• Users may require more accurate answer later
• ASAP can checkpoint and reuse estimators

More details in the paper

Implementation & Evaluation
§ Implemented on Apache Spark

§ Not limited to it, only relies on simple dataflow operators

§ Evaluated in a 16 node cluster
§ Twitter: 1.47B edges
§ Friendster: 1.8B edges
§ UK: 3.73B edges

§ Comparison using representative patterns:
§ 3 (2 patterns), 4 (6 patterns) and 5 motifs (21 patterns)

Performance on Small Graphs

12.1

162
291.4

3161

7.3
14.9 18.1

41.6

1

10

100

1000

10000

CiteSeer Mico Youtube LiveJournal

Ti
m

e
(s

)

Arabesque ASAP

4-Motifs (6 patterns)

Performance on Small Graphs

12.1

162
291.4

3161

7.3
14.9 18.1

41.6

1

10

100

1000

10000

CiteSeer Mico Youtube LiveJournal

Ti
m

e
(s

)

Arabesque ASAP

4-Motifs (6 patterns)

Performance on Small Graphs

77 x
<5% error

12.1

162
291.4

3161

7.3
14.9 18.1

41.6

1

10

100

1000

10000

CiteSeer Mico Youtube LiveJournal

Ti
m

e
(s

)

Arabesque ASAP

4-Motifs (6 patterns)

Large Graphs & Simple Patterns

645

2.5
5 5.9

1

10

100

1000

0.9 1.5 1.8 3.7

Ti
m

e
(m

in
)

Edges (Billions)

3-Motifs (2 patterns)

Arabesque ASAP

Large Graphs & Simple Patterns

645

2.5
5 5.9

1

10

100

1000

0.9 1.5 1.8 3.7

Ti
m

e
(m

in
)

Edges (Billions)

Proprietary graph, 20
machines (256GB each)

3-Motifs (2 patterns)

Arabesque ASAP

Large Graphs & Simple Patterns

645

2.5
5 5.9

1

10

100

1000

0.9 1.5 1.8 3.7

Ti
m

e
(m

in
)

Edges (Billions)

Proprietary graph, 20
machines (256GB each)

258 x
<5% error

3-Motifs (2 patterns)

Twitter Friendster UK

Arabesque ASAP

Large Graphs & Simple Patterns

645

2.5
5 5.9

1

10

100

1000

0.9 1.5 1.8 3.7

Ti
m

e
(m

in
)

Edges (Billions)

Proprietary graph, 20
machines (256GB each)

258 x
<5% error

3-Motifs (2 patterns)

Twitter Friendster UK

Arabesque ASAP

Large Graphs & Complex Patterns

4-Motifs

22

47

0
10
20
30
40
50

Twitter UK

Ti
m

e
(m

in
)

Large Graphs & Complex Patterns

12.3

22.1

5.6

14.2

0
5

10
15
20
25

Twitter UK
Ti

m
e

(m
in

)

5% 10%

5-House4-Motifs

22

47

0
10
20
30
40
50

Twitter UK

Ti
m

e
(m

in
)

Summary
§ Pattern mining important & challenging problem

§ Applications in many domains

§ ASAP uses approximation for fast pattern mining
§ Leverages graph mining theory & makes it practical
§ Simple API for developers

§ ASAP outperforms existing solutions
§ Can handle much larger graphs with fewer resources

http://www.cs.berkeley.edu/~api
api@cs.berkeley.edu

http://www.cs.berkeley.edu/~api
mailto:api@cs.berkeley.edu

