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Applying exact algorithm on sampled graph(s) 
not the right approach for pattern mining



ASAP leverages existing work in graph 
approximation theory and makes it practical
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Contributions:
• Extends neighborhood sampling to general patterns 
• Provides a unified API
• Applies approximate pattern mining in distributed settings
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API Description

sampleVertex: ()!(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()!(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)!(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)!(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)!boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.

Table 1: ASAP’s Approximate Pattern Mining API.
SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleTriangle

1 (e1, p1) = sampleEdge()
2 (e2, p2) = conditionalSampleEdge(Subgraph(e1))
3 if (!e2) return 0
4 subgraph1 = Subgraph(e1, e2)
5 subgraph2 = Triangle(e1, e2)-subgraph1
6 if conditionalClose(subgraph1, subgraph2)
7 return 1/(p1.p2)
8 else return 0

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second

8

Developers write a single estimator using ASAP’s API
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1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second
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output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
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1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
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5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second
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return 1/(p1.p2.p3)

else return 0

SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second
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Sampling phase fixes the vertices for a particular instance of a pattern 
and closing phase waits for remaining edgesASAP computes the right expectations, runs many 

instances of the estimator and aggregates results
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subgraph1 = Subgraph(e1,e2,e3)
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return 1/(p1.p2.p3)
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SampleFourCliqueType2

1 (e1, p1) = SampleEdge()
2 (e2, p2) = SampleEdge()
3 if (isAdjacent(e1, e2) == true)
4 return 0
5 subgraph1 = Subgraph(e1, e2)
6 subgraph2 = FourClique(e1, e2)-subgraph1
7 if ConditionalClose(subgraph1, subgraph2)
8 return 1/(p1.p2)
9 else

10 return 0
Figure 7: Example approximate pattern mining programs written using ASAP API

The programming API provides five functions as shown
in Table 1. We describe each function in detail and
illustrate how to use these functions to sample patterns:
• SampleVertex uniformly samples one vertex from the

graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices of the
graph.

• SampleEdge uniformly samples one edge from the graph.
Similarly to SampleVertex, it also takes no input, and
outputs e and p, where e is the sampled edge, and p
is the sampling probability, which is the inverse of the
number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
output yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have
been fixed and the sampling process only awaits the
additional edges to form the pattern.

6.2 Use Cases

Developers use the programming API to write approxi-
mation algorithms for graph pattern mining. We describe
a few use cases to illustrate the usage of the program-
ming API, which is shown in Figure 7. The use cases
include three representative graph patterns: three node
chain, triangle, and four clique.

Chain. Using our API to write a sampling function for
counting three node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second
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Key idea: Use a very small sample of the graph to build 
the ELP 
§ Chernoff analysis provides a loose upper bound on the 

number of estimators.
§ In small graphs, a large number of estimators can get us very 

close to ground truth.
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Advanced Mining
Predicate Matching
• Find patterns where vertices are of type “electronics”
• ASAP allows simple edge and vertex predicates

Motif Mining
• Some patterns are building blocks for other patterns
• ASAP caches state of the estimators and reuses them

Accuracy Refinement
• Users may require more accurate answer later
• ASAP can checkpoint and reuse estimators

More details in the paper



Implementation & Evaluation
§ Implemented on Apache Spark 

§ Not limited to it, only relies on simple dataflow operators

§ Evaluated in a 16 node cluster
§ Twitter: 1.47B edges
§ Friendster: 1.8B edges
§ UK: 3.73B edges

§ Comparison using representative patterns:
§ 3 (2 patterns), 4 (6 patterns) and 5 motifs (21 patterns)
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Large Graphs & Complex Patterns
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Summary
§ Pattern mining important & challenging problem

§ Applications in many domains

§ ASAP uses approximation for fast pattern mining
§ Leverages graph mining theory & makes it practical
§ Simple API for developers

§ ASAP outperforms existing solutions
§ Can handle much larger graphs with fewer resources

http://www.cs.berkeley.edu/~api
api@cs.berkeley.edu

http://www.cs.berkeley.edu/~api
mailto:api@cs.berkeley.edu

