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What is QOOP?

• QOOP is a
distributed data analytics system
that performs well under
resource volatilities

• Core Ideas –

• Re-architect the data analytics system stack

• Enable Dynamic Query Re-planning

• Simplify Scheduler
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Agenda

• Overview
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• QOOP’s Scheduler Choice

• Implementation

• Evaluation

3



Overview – Distributed Data Analytics
Job = SQL Query

Resource Cluster

Query Planner

Execution Engine

Scheduler

Evaluate 

Query Execution Plans 

(QEP)

Resource Requests Resource Allocations
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Overview – Distributed Data Analytics
Job = SQL Query

Resource Cluster

Query Planner
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Scheduler

Resource Requests Resource Allocations

5

Choose optimal QEP



Overview – Resource Volatilities

Job = SQL Query

Resource Share

more or less fixed
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Resource Volatilities

significantly changes over time



Overview – Resource Volatility; Spot Market
Single Job

Spot Market
Resource Cluster
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bid $

bid $ > market $

bid $ < market $
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Overview – Resource Volatility; Spot Market
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• Fixed budget 
cost-saving 
bidding strategy in 
AWS Spot Market

• 20% resource 
volatile event – 20% 
change in #machines 
over time

• 50 such events in a 
5-hour span
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Overview – Resource Volatility; Small Cluster
Job1 Job2

Small Shared 

Resource Cluster
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Only 
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Overview – Resource Volatility; Small Cluster

10

• TPC-DS online 
workload + Carbyne 
(OSDI’16) scheduler 
managing 600 cores

• 38% queries 
experience at least one 
20% resource volatility 
event



Motivating QOOP
Job = SQL Query

Resource Cluster

Query Planner

Execution Engine

Scheduler

Resource Volatilities

How well do 

Distributed Data Analytics Systems 

perform under Resource Volatilities?
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Motivating QOOP
Job = SQL Query

Query Planner

Execution Engine

Scheduler
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Static

Optimal QEP 

is fixed

Complex, Opaque

No 

Resource Volatility 
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Simple Scheduler 

Design

Motivating QOOP
Job = SQL Query

Query Planner

Execution Engine

Scheduler
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Dynamic

Re-architect 

the stack

Optimal QEP 

changes greedily
Resource Volatility 

Feedback
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Static Query Planner; Example
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each with different join order



Static Query Planner;  Terminology
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What is a QEP?

Directed Acyclic Graph (DAG)

What is a Task?

TaskResource

Time

Task

Task

Task

Task

Task

Task

Task

Vertex: Task
Edge: Dependency

Work



Static Query Planner; Example
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Choose an “optimal” QEP

Optimal – reduce query running time

A join B join C join D



•Clarinet (OSDI ‘16) Query Planner

• Estimates network IO, memory, and compute 
resources just before job execution

• Estimates running time of each QEP by 
simulating execution 

•Chooses QEP with 
minimum estimated running time

Static Query Planner; Clarinet
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•Given ‘r’ amount of resources at time t = 0

•Clarinet calculates running time of each QEP

Static Query Planner; Clarinet
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•Given ‘r’ amount of resources at time t = 0

•Clarinet calculates running time of each QEP

Static Query Planner; Clarinet
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•Given ‘r’ amount of resources at time t = 0

•Clarinet calculates running time of each QEP

Static Query Planner; Clarinet
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•Given ‘r’ amount of resources at time t = 0

•Clarinet calculates running time of each QEP

•Clarinet chooses Blue Plan

•However this choice is static 
and does not change during 
job’s lifetime

Static Query Planner
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•What if the amount of resources changes from r
to r’ at time t = 3?

Static Query Planner; Bad Outcomes
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•What if at t = 3 we switch to the Green plan

•Overcome starvation

Motivating QOOP’s Dynamic QEP switching
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• Static QEP – under adversarial resource volatilities can 
lead to bad outcomes
• Sub-Optimal behavior
• Starvation
• Unbounded work

•To overcome – QOOP proposes 
dynamic QEP switching –
• Backtracking
• Checkpointing 
• Greedy behavior

QOOP – Dynamic QEP switching
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• Switch from the Blue QEP to the Green QEP

• Backtracking – sacrifice current work and redo work in prior 
stages

Dynamic QEP switching; Backtracking
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• Switch from the Blue QEP to the Green QEP

• Backtracking – sacrifice current work and redo work in prior 
stages

Dynamic QEP switching; Backtracking
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• Switch from the Blue QEP to the Green QEP

• Backtracking – sacrifice current work and redo work in prior 
stages

Dynamic QEP switching; Backtracking
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partial work
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Only re-plan future work?
Backtracking essential to avoid 

bad outcomes



• Switch from the Blue QEP to the Green QEP

• Backtracking – sacrifice current work and redo work in prior 
stages

Dynamic QEP switching; Backtracking
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backtrack
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partial work
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Backtracking essential to avoid 

bad outcomes

What if we keep repeating work 

in an unbounded manner?



•Checkpoint and resume from checkpoints to bound work

• Switch to Green QEP resumes from checkpoint 

Dynamic QEP switching; Checkpointing
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•Checkpoint and resume from checkpoints to bound work

• Switch to Green QEP resumes from checkpoint 

Dynamic QEP switching; Checkpointing
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• Switch to QEP (red) with least running time in current 
resources

Dynamic QEP switching; Greedy
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• Switch to QEP (red) with least running time in current 
resources

Dynamic QEP switching; Greedy
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Intuition – Without knowledge of future 

resource volatilities, 

greedily maximize current progress



• Switch to QEP (red) with least running time in current 
resources

Dynamic QEP switching; Greedy
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Intuition – Without knowledge of future 

resource volatilities, 

greedily maximize current progress

Theorem: Greedy QEP switching has 

competitive ratio 2
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Complex and Opaque Schedulers
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• Increasing complexity of schedulers

•Manage multiple objectives –
fairness, packing, job completion time

•QEP-dependent heuristics
• Task Size – better fit (Tetris) 

• Dependencies – critical path (Carbyne)



Complex and Opaque Schedulers
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• Increasing complexity of schedulers

•Manage multiple objectives –
fairness, packing, job completion time

•QEP-dependent heuristics
• Task Size – better fit (Tetris) 

• Dependencies – critical path (Carbyne)

Opaque – Hard to model job behavior 

if an alternate QEP is picked



Complex and Opaque Schedulers
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• Increasing complexity of schedulers

•Manage multiple objectives –
fairness, packing, job completion time

•QEP-dependent heuristics
• Task Size – better fit (Tetris) 

• Dependencies – critical path (Carbyne)

Opaque – Hard to model job behavior 

if an alternate QEP is picked

Obstructs Dynamic QEP switching – requires ability 

to estimate alternate QEP’s performance



QOOP’s Scheduler Choice
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Job

Query 

Planner

Execution 

Engine

Scheduler

•We go back to a simple
QEP independent scheduler –
simple max-min fair scheduler

• Each job gets a fair 
resource share guarantee

• Enables feedback
about resource volatilities

• Supports 
dynamic QEP switching

Resource Share

=

Total Resources 

/ # Active 

Queries



Resource Volatility 

feedback 

= change in resource 

share

Scheduler

Dynamic

Simple Scheduler 

Design

QOOP Overall Design
Job = SQL Query

Query Planner

Execution Engine
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QOOP Implementation
Job = SQL Query

Resource Cluster

Query Planner

Execution Engine

Scheduler

New Resource 

Share

Hive – Cache multiple 

QEP’s and send to Tez

Tez – estimate runtime 

of QEP’s and greedy switch

YARN – simple max-

min fair with feedback
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QOOP Evaluation

• Testbed –
• 20 bare-metal servers

• Micro-benchmark Workload –
• Single Query under different 

spot market resource volatility 
regimes

• Macro-benchmark Workload –
• 200 queries randomly drawn from TPC-DS

• Online arrival of queries following Poisson process
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Regime Volatility%

Low < 10%

Medium 10% - 20%

High > 20%



QOOP Evaluation – Micro-benchmark

• Factor of Improvement = 
Running Time with Clarinet / Running 
Time with QOOP

• Gains increase with increasing resource 
volatility

• ~10% jobs > 4x gains

• ~35% queries see no improvements –
• low complexity queries 

• low duration queries
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QOOP Evaluation – Micro-benchmark

• Increasing complexity i.e. 
number of joins => 
higher gains

• More alternative QEP’s => 
higher likelihood to find a 
better QEP switch
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QOOP Evaluation – Micro-benchmark

• Backtracking is beneficial
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QOOP Evaluation – Micro-benchmark

• Backtracking is beneficial

• 5.7% of all QEP switches 
involve backtracking
• pre-dominantly due to high 

resource volatility 

• at-most 2 stages deep
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QOOP Evaluation – Macro-benchmark

• Job Performance 

• Carbyne (OSDI’16) + 
Clarinet (OSDI’16) – two 
complex solutions put together

• Closest to ideal baseline SJF –
even with a simple max-min fair 
scheduler
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QOOP Evaluation – Macro-benchmark
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• Cluster Efficiency

• Carbyne (OSDI’16) + 
Clarinet (OSDI’16) – two 
complex solutions put together

• Closest to ideal baseline Tetris 
– even with a simple max-min 
fair scheduler



QOOP Evaluation – Macro-benchmark
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• Cluster Efficiency

• Carbyne (OSDI’16) + 
Clarinet (OSDI’16) – two 
complex solutions put together

• Closest to ideal baseline Tetris 
– even with a simple max-min 
fair scheduler

Each job’s greedy behavior is beneficial



QOOP Summary

• Resource volatilities exist in practice

•QOOP is suited for distributed data analytics under resource 
volatilities
• Simple scheduler choice + feedback

• Dynamic QEP switching at the Query Planner
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Thank you!

Poster #40

Questions?



Backup Slide – Prevalence of Small Clusters

#Machine % Users

1 - 99 75%

100-1000 21%

1000+ 4%
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Reference: Mesosphere Survey, 2016.


