
Dynamic Query Re-planning 
using QOOP

Kshiteej Mahajanw, Mosharaf Chowdhurym, Aditya Akellaw, Shuchi Chawlaw

1



What is QOOP?

• QOOP is a
distributed data analytics system
that performs well under
resource volatilities

• Core Ideas –

• Re-architect the data analytics system stack

• Enable Dynamic Query Re-planning

• Simplify Scheduler

2



Agenda

• Overview
• Distributed Data Analytics Systems

• Resource Volatilities

• Overcoming Inefficiency #1
• Static Query Planner

• QOOP’s Dynamic QEP Switching

• Overcoming Inefficiency #2
• Complex and Opaque Scheduler

• QOOP’s Scheduler Choice

• Implementation

• Evaluation

3



Overview – Distributed Data Analytics
Job = SQL Query

Resource Cluster

Query Planner

Execution Engine

Scheduler

Evaluate 

Query Execution Plans 

(QEP)

Resource Requests Resource Allocations

4



Overview – Distributed Data Analytics
Job = SQL Query

Resource Cluster

Query Planner

Execution Engine

Scheduler

Resource Requests Resource Allocations

5

Choose optimal QEP



Overview – Resource Volatilities

Job = SQL Query

Resource Share

more or less fixed

6

Resource Volatilities

significantly changes over time



Overview – Resource Volatility; Spot Market
Single Job

Spot Market
Resource Cluster

7

bid $

bid $ > market $

bid $ < market $



12

Overview – Resource Volatility; Spot Market

8

• Fixed budget 
cost-saving 
bidding strategy in 
AWS Spot Market

• 20% resource 
volatile event – 20% 
change in #machines 
over time

• 50 such events in a 
5-hour span

10



Overview – Resource Volatility; Small Cluster
Job1 Job2

Small Shared 

Resource Cluster

9

Job1’s 

Resource Share

Resource 

Contention

Only 

Job1

Job2

enters

Job2

exits



Overview – Resource Volatility; Small Cluster

10

• TPC-DS online 
workload + Carbyne 
(OSDI’16) scheduler 
managing 600 cores

• 38% queries 
experience at least one 
20% resource volatility 
event



Motivating QOOP
Job = SQL Query

Resource Cluster

Query Planner

Execution Engine

Scheduler

Resource Volatilities

How well do 

Distributed Data Analytics Systems 

perform under Resource Volatilities?

11



Motivating QOOP
Job = SQL Query

Query Planner

Execution Engine

Scheduler

12

Static

Optimal QEP 

is fixed

Complex, Opaque

No 

Resource Volatility 

Feedback



Simple Scheduler 

Design

Motivating QOOP
Job = SQL Query

Query Planner

Execution Engine

Scheduler

13

Dynamic

Re-architect 

the stack

Optimal QEP 

changes greedily
Resource Volatility 

Feedback



Agenda

• Overview
• Distributed Data Analytics Systems

• Resource Volatilities

• Overcoming Inefficiency #1
• Static Query Planner

• QOOP’s Dynamic QEP Switching

• Overcoming Inefficiency #2
• Complex and Opaque Scheduler

• QOOP’s Scheduler Choice

• Implementation

• Evaluation

14



Static Query Planner; Example

15

A

B

C

D

AB

CD

ABCD

A join B join C join D

A

B

C

D

AC

BD

A

B

C

D

A

B

C

D

AB

ABC

AB

CD

Three alternate Query Execution Plans (QEP’s) 

each with different join order



Static Query Planner;  Terminology

16

What is a QEP?

Directed Acyclic Graph (DAG)

What is a Task?

TaskResource

Time

Task

Task

Task

Task

Task

Task

Task

Vertex: Task
Edge: Dependency

Work



Static Query Planner; Example

17

Choose an “optimal” QEP

Optimal – reduce query running time

A join B join C join D



•Clarinet (OSDI ‘16) Query Planner

• Estimates network IO, memory, and compute 
resources just before job execution

• Estimates running time of each QEP by 
simulating execution 

•Chooses QEP with 
minimum estimated running time

Static Query Planner; Clarinet

19



•Given ‘r’ amount of resources at time t = 0

•Clarinet calculates running time of each QEP

Static Query Planner; Clarinet

20

Time

Resource

r
A

B

C

D

AB

CD

ABCD

A

B

C

D

AB

CD

ABCD

A

B

C

D

AB

CD

ABCD

6

Time= 

6



•Given ‘r’ amount of resources at time t = 0

•Clarinet calculates running time of each QEP

Static Query Planner; Clarinet

21

Time

Resource

r
A

B

C

D

AB

ABC

AB

CD

A

B

C

D

AB

ABC

AB

CD

A

B

C

D

AB ABC
AB

CD

Time= 

7.5

7.56

Time= 

6



•Given ‘r’ amount of resources at time t = 0

•Clarinet calculates running time of each QEP

Static Query Planner; Clarinet

22

Time

Resource

r Time= 

7.5

Time= 

6

7.56

A

B

C

D

AC

BD

A

B

C

D

A

B

C

D

AC

BD

A

B

C

D

A

B

C

D

AC

BD

A

B

C

D
5

Time= 

5



•Given ‘r’ amount of resources at time t = 0

•Clarinet calculates running time of each QEP

•Clarinet chooses Blue Plan

•However this choice is static 
and does not change during 
job’s lifetime

Static Query Planner

23

Time= 

7.5

Time= 

6

Time= 

5



•What if the amount of resources changes from r
to r’ at time t = 3?

Static Query Planner; Bad Outcomes

24

Time

Resource

r

A

B

C

D

AC

BD

A

B

C

D

A

B

C

D

AC

BD

A

B

C

D

A

B

C

D

AC

BD

A

B

C

D

Time= 5
Time= ∞

r’

3

Clarinet

Starvation

Sub-optimal time

Unbounded work



•What if at t = 3 we switch to the Green plan

•Overcome starvation

Motivating QOOP’s Dynamic QEP switching

25

Time

Resource

r

A

B

C

D

12

r’

3

CD
A

B

C

D
AB ABCD

Query Execution Plan switching 

can be beneficial

Time= 12



• Static QEP – under adversarial resource volatilities can 
lead to bad outcomes
• Sub-Optimal behavior
• Starvation
• Unbounded work

•To overcome – QOOP proposes 
dynamic QEP switching –
• Backtracking
• Checkpointing 
• Greedy behavior

QOOP – Dynamic QEP switching

26



• Switch from the Blue QEP to the Green QEP

• Backtracking – sacrifice current work and redo work in prior 
stages

Dynamic QEP switching; Backtracking

27

backtrack

sacrifice 

partial work

A

B

C

D

A

B

C

D

repeat work from 

prior stages



• Switch from the Blue QEP to the Green QEP

• Backtracking – sacrifice current work and redo work in prior 
stages

Dynamic QEP switching; Backtracking

28

backtrack

sacrifice 

partial work

A

B

C

D

A

B

C

D

repeat work from 

prior stages

Only re-plan future work?



• Switch from the Blue QEP to the Green QEP

• Backtracking – sacrifice current work and redo work in prior 
stages

Dynamic QEP switching; Backtracking

29

backtrack

sacrifice 

partial work

A

B

C

D

A

B

C

D

repeat work from 

prior stages

Only re-plan future work?
Backtracking essential to avoid 

bad outcomes



• Switch from the Blue QEP to the Green QEP

• Backtracking – sacrifice current work and redo work in prior 
stages

Dynamic QEP switching; Backtracking

30

backtrack

sacrifice 

partial work

A

B

C

D

A

B

C

D

repeat work from 

prior stages

Backtracking essential to avoid 

bad outcomes

What if we keep repeating work 

in an unbounded manner?



•Checkpoint and resume from checkpoints to bound work

• Switch to Green QEP resumes from checkpoint 

Dynamic QEP switching; Checkpointing

32

A

B

C

D

A

B

C

D

bound repeated 

work and resume 

from checkpoint



•Checkpoint and resume from checkpoints to bound work

• Switch to Green QEP resumes from checkpoint 

Dynamic QEP switching; Checkpointing

33

A

B

C

D

A

B

C

D

Which QEP to switch to?

bound repeated 

work and resume 

from checkpoint



• Switch to QEP (red) with least running time in current 
resources

Dynamic QEP switching; Greedy

35

Time

r

A

B

C

D

10

r’

3

CDAB ABCD

A

B

C

D

AB

CD

ABCD

A

B

C

D

AB

ABC A

B

C

D

AB ABC
AB

CD

9



• Switch to QEP (red) with least running time in current 
resources

Dynamic QEP switching; Greedy

36

Time

r

A

B

C

D

10

r’

3

CDAB ABCD

A

B

C

D

AB

CD

ABCD

A

B

C

D

AB

ABC A

B

C

D

AB ABC
AB

CD

9

Intuition – Without knowledge of future 

resource volatilities, 

greedily maximize current progress



• Switch to QEP (red) with least running time in current 
resources

Dynamic QEP switching; Greedy

37

Time

r

A

B

C

D

10

r’

3

CDAB ABCD

A

B

C

D

AB

CD

ABCD

A

B

C

D

AB

ABC A

B

C

D

AB ABC
AB

CD

9

Intuition – Without knowledge of future 

resource volatilities, 

greedily maximize current progress

Theorem: Greedy QEP switching has 

competitive ratio 2



Agenda

• Overview
• Distributed Data Analytics Systems

• Resource Volatilities

• Overcoming Inefficiency #1
• Static Query Planner

• QOOP’s Dynamic QEP Switching

• Overcoming Inefficiency #2
• Complex and Opaque Scheduler

• QOOP’s Scheduler Choice

• Implementation

• Evaluation

38



Complex and Opaque Schedulers

39

Job

Query 

Planner

Execution 

Engine

Scheduler
Fairness

Packing

Job Completion Time

Job

Query 

Planner

Execution 

Engine

• Increasing complexity of schedulers

•Manage multiple objectives –
fairness, packing, job completion time

•QEP-dependent heuristics
• Task Size – better fit (Tetris) 

• Dependencies – critical path (Carbyne)



Complex and Opaque Schedulers

40

Job

Query 

Planner

Execution 

Engine

Scheduler
Fairness

Packing

Job Completion Time

Job

Query 

Planner

Execution 

Engine

• Increasing complexity of schedulers

•Manage multiple objectives –
fairness, packing, job completion time

•QEP-dependent heuristics
• Task Size – better fit (Tetris) 

• Dependencies – critical path (Carbyne)

Opaque – Hard to model job behavior 

if an alternate QEP is picked



Complex and Opaque Schedulers

41

Job

Query 

Planner

Execution 

Engine

Scheduler
Fairness

Packing

Job Completion Time

Job

Query 

Planner

Execution 

Engine

• Increasing complexity of schedulers

•Manage multiple objectives –
fairness, packing, job completion time

•QEP-dependent heuristics
• Task Size – better fit (Tetris) 

• Dependencies – critical path (Carbyne)

Opaque – Hard to model job behavior 

if an alternate QEP is picked

Obstructs Dynamic QEP switching – requires ability 

to estimate alternate QEP’s performance



QOOP’s Scheduler Choice

49

Job

Query 

Planner

Execution 

Engine

Scheduler

•We go back to a simple
QEP independent scheduler –
simple max-min fair scheduler

• Each job gets a fair 
resource share guarantee

• Enables feedback
about resource volatilities

• Supports 
dynamic QEP switching

Resource Share

=

Total Resources 

/ # Active 

Queries



Resource Volatility 

feedback 

= change in resource 

share

Scheduler

Dynamic

Simple Scheduler 

Design

QOOP Overall Design
Job = SQL Query

Query Planner

Execution Engine

50

Re-architect 

the stack

Greedy 

dynamic QEP switching

Fairness

Packing

Job Completion Time



Agenda

• Overview
• Distributed Data Analytics Systems

• Resource Volatilities

• Overcoming Inefficiency #1
• Static Query Planner

• QOOP’s Dynamic QEP Switching

• Overcoming Inefficiency #2
• Complex and Opaque Scheduler

• QOOP’s Scheduler Choice

• Implementation

• Evaluation

57



QOOP Implementation
Job = SQL Query

Resource Cluster

Query Planner

Execution Engine

Scheduler

New Resource 

Share

Hive – Cache multiple 

QEP’s and send to Tez

Tez – estimate runtime 

of QEP’s and greedy switch

YARN – simple max-

min fair with feedback

58



QOOP Evaluation

• Testbed –
• 20 bare-metal servers

• Micro-benchmark Workload –
• Single Query under different 

spot market resource volatility 
regimes

• Macro-benchmark Workload –
• 200 queries randomly drawn from TPC-DS

• Online arrival of queries following Poisson process

59

Regime Volatility%

Low < 10%

Medium 10% - 20%

High > 20%



QOOP Evaluation – Micro-benchmark

• Factor of Improvement = 
Running Time with Clarinet / Running 
Time with QOOP

• Gains increase with increasing resource 
volatility

• ~10% jobs > 4x gains

• ~35% queries see no improvements –
• low complexity queries 

• low duration queries

61



QOOP Evaluation – Micro-benchmark

• Increasing complexity i.e. 
number of joins => 
higher gains

• More alternative QEP’s => 
higher likelihood to find a 
better QEP switch

62



QOOP Evaluation – Micro-benchmark

• Backtracking is beneficial

65



QOOP Evaluation – Micro-benchmark

• Backtracking is beneficial

• 5.7% of all QEP switches 
involve backtracking
• pre-dominantly due to high 

resource volatility 

• at-most 2 stages deep

66



QOOP Evaluation – Macro-benchmark

• Job Performance 

• Carbyne (OSDI’16) + 
Clarinet (OSDI’16) – two 
complex solutions put together

• Closest to ideal baseline SJF –
even with a simple max-min fair 
scheduler

69

0

100

200

300

400

500

600

Avg JCT (seconds)

SJF Carbyne+Clarinet QOOP



QOOP Evaluation – Macro-benchmark

70

0

1000

2000

3000

4000

5000

6000

7000

8000

Makespan (seconds)

Tetris Carbyne+Clarinet QOOP

• Cluster Efficiency

• Carbyne (OSDI’16) + 
Clarinet (OSDI’16) – two 
complex solutions put together

• Closest to ideal baseline Tetris 
– even with a simple max-min 
fair scheduler



QOOP Evaluation – Macro-benchmark

71

0

1000

2000

3000

4000

5000

6000

7000

8000

Makespan (seconds)

Tetris Carbyne+Clarinet QOOP

• Cluster Efficiency

• Carbyne (OSDI’16) + 
Clarinet (OSDI’16) – two 
complex solutions put together

• Closest to ideal baseline Tetris 
– even with a simple max-min 
fair scheduler

Each job’s greedy behavior is beneficial



QOOP Summary

• Resource volatilities exist in practice

•QOOP is suited for distributed data analytics under resource 
volatilities
• Simple scheduler choice + feedback

• Dynamic QEP switching at the Query Planner

72

Thank you!

Poster #40

Questions?



Backup Slide – Prevalence of Small Clusters

#Machine % Users

1 - 99 75%

100-1000 21%

1000+ 4%

73

Reference: Mesosphere Survey, 2016.


