uTune: Auto-Tuned Threading for OLDI
Microservices

Akshitha Sriraman, Thomas F. Wenisch

University of Michigan

o/o8/201 ada
10/08/2018 /

Applications Driving Architectures

OLDI: From Monoliths to Microservices

Monolith Microservices
@ O Q|| A |l @
AN
= ° @ ®
Scaling _— Scaling
s - N - D [A A A RPC
> < < [ollo||lo } oo
I

& = - = V2R = - = J [. ’ . { . .
L > 100ms 510 L. Sub-ms SLO

Monolith

Microservice

300ms 100us

2 4

4

20 s 20 s
o ,
g % 20%!
120us

300.02ms

Sub-ms-scale system overheads must be characterized for microservices

3 MichiganEngineering

¥ uTune: Auto-Tuned Threading for OLDI Microservices 2

Impact of Threading on Microservices

e Qur focus: Sub-ms overheads due to threading design

Blocking Polling

1

Polling

Low load —> @ I
K

A ! ¢,
- (5@

Lock contention

s»
, &
I |2

(ﬁ"l|‘n\
—_— E’ \

Thread wakeups

D]
—

N
N

v

'
7

.]

‘ 7 =—n o

Spurious context switch

R

88

Polling

High load —> @

)

y

Threading model that exhibits best tail latency is a function of load

MichiganEngineering

uTune: Auto-Tuned Threading for OLDI Microservices

Contributions

e A taxonomy of threading models
— Structured understanding of threading implications
» Reveals tail inflection points across load
» Peak load-sustaining model is worse at low load

e uTune:
— Uses tail inflection insights to optimize tail latency

— Tunes model & thread pool size across load

Latency

— Simple interface: Abstracts threading model from RPC code

Up to 1.9x tail improvement over static throughput-optimized model

Gy ViehganFngineering UTune: Auto-Tuned Threading for OLDI Microservices 4

e Motivation

e ulune:

Outline

A taxonomy of threading models

— Simple interface design

— Automatic load adaptation system

e FEvaluation

MichiganEngineering

uTune: Auto-Tuned Threading for OLDI Microservices

Mid-tier Faces More Threading Overheads

Front-End Microserver Mid-Tier Microserver

Leaf Microserver 1

e Mid-tier — subject to more threading overheads

Leaf Microserver 2
— Manages RPC fan-out to many leaves

— RPC layer interactions dominate computation

Threading overheads must be characterized for mid-tier microservices

Z P MehganEngneering UTune: Auto-Tuned Threading for OLDI Microservices 6

A Taxonomy of Threading Models

Front-End Mid-Tier Leaf Synchronous
NW socket E— :
9 %vsggg - + Block ! Poll
(1) Poll vs. Block | network poller [In-line i |1 SIB SIp
Request :
>:: Worker Dispatch SDB SDP

(2) In-line vs. Dispatch %nggg

Asynchronous
(3) Synchronous | Response - Block Poll
>
VS. %vs §§§ In-line AlB AlP
Asynchronous Dispatch | ADB ADP

G NMehoenngineeing uTune: Auto-Tuned Threading for OLDI Microservices

Latency Tradeoffs Across Threading Models

saturation %

No
L
o

X In-line Block
® In-line Poll

s
@
x
x
.

[EEN
1

B Dispatch Block
A Dispatch Poll

o
Ul
I

99th percentile tail latency (ms)

HDSearch: Sync.

o

10 100 1000 10000

Load (Queries Per Second)

In-line Poll has lowest low-load latency: Avoids thread wakeup delays

MichiganEngineering uTune: Auto-Tuned Threading for OLDI Microservices 8

Latency Tradeoffs Across Threading Models

: saturation ‘>A<
5 o4 T
: RJo
g 1.5 1 X In-line Block
& b 8 & (A |
= A X ® In-line Poll
29 e °.)¢ -
= @‘ M Dispatch Block
<
S 0.5 - A Dispatch Poll
S
< HDSearch: Sync.
g 0 T T 1

10 100 1000 10000

Load (Queries Per Second)

In-Line Poll faces contention; Dispatch Poll with one network poller is best

MichiganEngineering uTune: Auto-Tuned Threading for OLDI Microservices 9

Latency Tradeoffs Across Threading Models

o2 e |
£ 00
5 e |
515 - @V X In-line Block
© . ® In-line Pol
= A é X " % n-line Po
E 1 ¢ ¢ ¥ B Dispatch Block
B
[.
3 o5 A A Dispatch Poll
S
c HDSearch: Sync.
5 O T T 1
(@)}

10 100 1000 10000

Load (Queries Per Second)

Dispatch Block is best at high load as it does not waste CPU

. LSS el o uTune: Auto-Tuned Threading for OLDI Microservices 10

Latency Tradeoffs Across Threading Models
saturation @I‘

X In-line Block

e

No smgle threading model works best at all loads

.I: /-\
(=
Q
S 05 A Dispatch Poll
S
= HDSearch: Sync.
% O T T 1
10 100 1000 10000
Load (Queries Per Second)
) MichiganEngineering

> uTune: Auto-Tuned Threading for OLDI Microservices 11

Need for Automatic Load Adaptation: uTune

e Threading choice can significantly affect tail latency
e Threading latency trade-offs are not obvious
e Most software face latency penalties due to static threading

Opportunity: Exploit trade-offs among threading models at run-time

dl® Sl el uTune: Auto-Tuned Threading for OLDI Microservices

12

ulune

e |Load adaptation: Vary threading model & pool size at run-time
e Abstract threading model boiler-plate code from RPC code

App layer | Microservice functionality: ProcessReq(), InvokelLeaf(), FinalizeResp()

uTune KLTune automatic load adaptation system

Network layer RPC layer

Simple interface: Developer defines only three functions

Z P MehganEngneering UTune: Auto-Tuned Threading for OLDI Microservices 13

Service code

Simple Quick load change
interface e s detection
threading
framework
Scale

Fast threading

model switches thread pools

A

g YehgarEngineering HTune: Auto-Tuned Threading for OLDI Microservices 14

uTune System Design: Auto-Tuner

e Dynamically picks threading model & pool sizes based on load

Offline Request rate Best TM Ideal no. of threads
training
o —> 0- 128 QPS SIP In-line: one
‘?\ Create piecewise
. linear model
4096 — 8192 QPS SDB NW poller: one, Workers: many
(eg. 50), Resp. threads: many
Online: -“'___I """" I;_;f """""" e L L
Request Circular event buffer v
from _ L. _ _. Send to - Switch to loaf
front-end | gRPC switching \.§ bestTM& | _ _ _._ _ _._. Fieﬂusst_tciga _______________ >
logic | 8" thread pool
sizes
Request rate
compute

dl® Sl el uTune: Auto-Tuned Threading for OLDI Microservices

Experimental Setup

e uSuite briraman’18henchmark suite:
— Load generator, a mid-tier, 4 or 16 leaf microservers

e Study pTune’s adaptation in two load scenarios:

— Steady-state
— Transient

dl® Sl el uTune: Auto-Tuned Threading for OLDI Microservices

16

¥

Evaluation: uTune S Load Adaptatlon

B In-LinePoll B Dispatch Poll

2 '?t_f?_t}ff?_‘?'f’f_‘

z 24 1.9

£ 15 -

B 1| gMr

£ 05 -

o

s 20 50 100 1K 8K 14K
(@)

(@)

Load (Queries Per Second)

Converges to best threading model & pool sizes to improve tails by up to 1.9x

hl® e el uTune: Auto-Tuned Threading for OLDI Microservices

17

Conclusion

e Taxonomy of threading models
— No single threading model has best tail latency across all load

e LTune —threading model framework + load adaptation system
e Achieved up to 1.9x tail speedup over best static model

i AIGeT g e T uTune: Auto-Tuned Threading for OLDI Microservices

18

uTune: Auto-Tuned Threading for OLDI Microservices

Akshitha Sriraman, Thomas F. Wenisch
University of Michigan

https://github.com/wenischlab/MicroTune

Poster number: 29

Gy engenngimesing uTune: Auto-Tuned Threading for OLDI Microservices

19

