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OLDI: From Monoliths to Microservices

Monolith Microservices
@ O Q|| A |l @
AN
= ° @ ®
Scaling _— Scaling
s - N - D [ A A A RPC
> < < [ ollo||lo } oo
I

& = - = V2R = - = J [ . ’ . { . .
L > 100ms 510 L. Sub-ms SLO

Monolith

Microservice

300ms 100us

2 4

4

20 s 20 s
o ,
g % 20%!
120us

300.02ms

Sub-ms-scale system overheads must be characterized for microservices
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Impact of Threading on Microservices

e Qur focus: Sub-ms overheads due to threading design
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Threading model that exhibits best tail latency is a function of load
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Contributions

e A taxonomy of threading models
— Structured understanding of threading implications
» Reveals tail inflection points across load
» Peak load-sustaining model is worse at low load

e uTune:
— Uses tail inflection insights to optimize tail latency

— Tunes model & thread pool size across load

Latency

— Simple interface: Abstracts threading model from RPC code

Up to 1.9x tail improvement over static throughput-optimized model
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e Motivation

e ulune:

Outline

A taxonomy of threading models

— Simple interface design

— Automatic load adaptation system

e FEvaluation
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Mid-tier Faces More Threading Overheads

Front-End Microserver Mid-Tier Microserver

Leaf Microserver 1

e Mid-tier — subject to more threading overheads

Leaf Microserver 2
— Manages RPC fan-out to many leaves

— RPC layer interactions dominate computation

Threading overheads must be characterized for mid-tier microservices
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A Taxonomy of Threading Models
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Latency Tradeoffs Across Threading Models
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In-line Poll has lowest low-load latency: Avoids thread wakeup delays
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Latency Tradeoffs Across Threading Models
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In-Line Poll faces contention; Dispatch Poll with one network poller is best
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Latency Tradeoffs Across Threading Models
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Dispatch Block is best at high load as it does not waste CPU
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Latency Tradeoffs Across Threading Models
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Need for Automatic Load Adaptation: uTune

e Threading choice can significantly affect tail latency
e Threading latency trade-offs are not obvious
e Most software face latency penalties due to static threading

Opportunity: Exploit trade-offs among threading models at run-time
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ulune

e |Load adaptation: Vary threading model & pool size at run-time
e Abstract threading model boiler-plate code from RPC code

App layer | Microservice functionality: ProcessReq(), InvokelLeaf(), FinalizeResp()

uTune KLTune automatic load adaptation system

Network layer RPC layer

Simple interface: Developer defines only three functions
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Service code

Simple Quick load change
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uTune System Design: Auto-Tuner

e Dynamically picks threading model & pool sizes based on load
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Experimental Setup

e uSuite briraman’18henchmark suite:
— Load generator, a mid-tier, 4 or 16 leaf microservers

e Study pTune’s adaptation in two load scenarios:

— Steady-state
— Transient
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¥

Evaluation: uTune S Load Adaptatlon
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Converges to best threading model & pool sizes to improve tails by up to 1.9x
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Conclusion

e Taxonomy of threading models
— No single threading model has best tail latency across all load

e LTune —threading model framework + load adaptation system
e Achieved up to 1.9x tail speedup over best static model
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