
Overload Control for
μs-scale RPCs with Breakwater

Inho Cho, Ahmed Saeed, Joshua Fried,
Seo Jin Park, Mohammad Alizadeh, Adam Belay

1



Trend: μs-scale RPCs
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1. Fast Network: Network latency (~ 5 us)

2. Fast Storage: M.2 NVME SSD (~ 20 us)

3. In-memory operations: Memcached, Reddis, Ignite



Trend: High Fan-out
Remote memory

https:/ /

Encryption Cache Storage
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Web serverInternet



Load Imbalance Unexpected user traffic

Packet bursts Redirected traffic due to failure

!
!

Causes of Server Overload
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Without overload control, server overload makes almost all 
requests violate its SLO.
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SLO



Ideal Overload Control

Server

Clients
6

Request

should keep request queue short, but not empty
should inform clients about overload quickly



Strawman #1: Server-side AQM
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Drop notification



Strawman #1: Server-side AQM
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Strawman #1: Server-side AQM

Server

Clients
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The cost of packet processing is comparable to the 
service time

Packet
processing

Request
execution

≈

Request



Strawman #2: Client Rate limiting

Server

Clients
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Request



Server

Clients
8

Request

Probing server status incur high message overhead

Hey server, are you busy?

Hey server, are you busy?

Hey server, are you busy?

Hey server, are you busy?

Strawman #2: Client Rate limiting



Breakwater
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Overload control scheme for μs-scale RPCs

Components Benefits

1. Credit-based admission control Coordinates requests with 
minimum delay

2. Demand speculation Minimizes message overhead

3. Delay-based AQM Ensures low tail latency



Breakwater’s benefits
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(1) High throughput
(2) Low and bounded tail latency
(3) Scalability to a large number of clients

Handles server overload with μs-scale RPCs with



Queueing delay as congestion signal

Server

Clients RequestCredit Response
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Server

Clients

For every RTT:
If delay < target:
credit += A

Else:
B = MAX(1 − β � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡

𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡
, 0.5)

credit ×= B

RequestCredit Response
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Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests 
with credits



Server

Clients RequestCredit Response
13

register

Client 1
Client 2
Client 3
Client 4

Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests 
with credits



Server

Clients RequestCredit Response
13

Client 1
Client 2
Client 3
Client 4

Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests 
with credits



Server

Clients RequestCredit Response
13

deregister

Client 1
Client 2
Client 3
Client 4

Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests 
with credits



Demand Message Overhead

Server

Clients RequestCredit Response

Server needs to know which client has demand
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Client 1
Client 2
Client 3
Client 4



Server

Clients RequestCredit Response
14

Demand Message Overhead
Server needs to know which client has demand



Server

Clients

I have n requests!

RequestCredit Response
14

Demand Message Overhead
Server needs to know which client has demand
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Credit-based admission control has lower and bounded 
tail latency but lower throughput.
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Impact of Credit-based Admission Control



Piggybacking Demand Information

Server

Clients

I have n requests!

RequestCredit Response

Breakwater piggybacks clients’ demand 
information into requests.

16



Server

Clients

I have n requests!

RequestCredit Response

(I have n more request)
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Piggybacking Demand Information
Breakwater piggybacks clients’ demand 
information into requests.



Server

Clients RequestCredit Response
17

Comp. #2: Demand Speculation
Breakwater speculate clients’ demand to minimize 
message overhead



Server

Clients RequestCredit Response
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Comp. #2: Demand Speculation
Breakwater speculate clients’ demand to minimize 
message overhead



Server

Clients RequestCredit Response
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Comp. #2: Demand Speculation
Breakwater speculate clients’ demand to minimize 
message overhead



Idealcredit credit + demand spec.
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Demand speculation improves throughput with 
higher tail latency

SLO

Impact of Adding Demand Speculation



Credit Overcommitment

Server

Clients RequestCredit Response
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Server issues more credit than the number of 
requests it can accomodate



Incast Causing Long Queue

Server

Clients RequestCredit Response
19

With credit overcommitment, multiple requests 
may arrive at the server at the same time



Comp. #3: Delay-based AQM

Server

Clients RequestCredit Response
19

To ensure low tail latency, the server drops 
requests if queueing delay exceeds threshold.

drop



Server

Clients RequestCredit Response
19

drop

Comp. #3: Delay-based AQM
To ensure low tail latency, the server drops 
requests if queueing delay exceeds threshold.



Impact of Adding Delay-based AQM
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credit + demand spec.
No overload control

credit + demand spec. + AQM
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SLO

Breakwater achieves high throughput and low and 
bounded tail latency at the same time



Testbed Setup
- xl170 in Cloudlab
- 11 machines are connected to a single switch
- 10 client machines / 1 server machine
- Implementation on Shenango as a RPC layer

Synthetic Workload
- Clients generate request with open-loop Poisson process
- Requests spin-loops specified amount of time at server
- Exponential service time distribution with 10μs average

Evaluation
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(1) Does Breakwater achieves high throughput and low tail 
latency even with demand spikes?

(2) Does Breakwater provides fast notification for the rejected 
requests?

(3) Is Breakwater scalable to many clients?

Evaluation

22

Baselines:
DAGOR

priority-based overload control used in WeChat
SEDA

adaptive overload control for staged event-driven architecture



High Goodput with Fast Convergence
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Breakwater converges to higher goodput 25x faster than 
DAGOR and 79x faster than SEDA.
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Low and Bounded Tail Latency

0.01
0.1

1
10

100
1000

0 2 4 6 8 10

99
%

-il
e

La
te

nc
y 

(m
s)

Time (seconds)

SLO

Breakwater DAGOR SEDA

24

Breakwater maintains low tail latency even with load 
spikes.
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Fast Notification of Reject
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Breakwater notifies rejected request to clients before 
violating its SLO.
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Scalability to Many Clients
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Breakwater easily scales to 10,000 clients.



• Breakwater is a server-driven credit-based overload 
control system for μs-scale RPCs

d

• Breakwater’s key components include
(1) Credit-based admission control
(2) Demand speculation
(3) Delay-based AQM

D

• Our evaluation shows that Breakwater achieves
(1) Low & bounded tail latency with high throughput
(2) Fast notification for a rejected request
(3) Scalability to many clients

27

Conclusion



Thank you!

Questions?
Inho Cho <inhocho@csail.mit.edu>
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inhocho89.github.io/breakwater/
Breakwater is available at 
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