
Overload Control for
μs-scale RPCs with Breakwater

Inho Cho, Ahmed Saeed, Joshua Fried,
Seo Jin Park, Mohammad Alizadeh, Adam Belay

1



Trend: μs-scale RPCs

2

1. Fast Network: Network latency (~ 5 us)

2. Fast Storage: M.2 NVME SSD (~ 20 us)

3. In-memory operations: Memcached, Reddis, Ignite



Trend: High Fan-out
Remote memory

https:/ /

Encryption Cache Storage
3

Web serverInternet



Load Imbalance Unexpected user traffic

Packet bursts Redirected traffic due to failure

!
!

Causes of Server Overload

4



0

200

400

600

800

0 0.4 0.8 1.2 1.6

Th
ro

ug
hp

ut
 

(k
re

qs
/s

)

Clients' Demand (Mreqs/s)

1
10

100
1,000

10,000
100,000

0 0.4 0.8 1.2 1.6

La
te

nc
y 

(μ
s)

Clients' Demand (Mreqs/s)

Performance Without Overload Control

99th

50th

Without overload control, server overload makes almost all 
requests violate its SLO.

5

SLO



Ideal Overload Control

Server

Clients
6

Request

should keep request queue short, but not empty
should inform clients about overload quickly



Strawman #1: Server-side AQM

Server

Clients
7

Request

drop

Drop notification



Strawman #1: Server-side AQM

Server

Clients
7

Request

drop

Drop notification



Strawman #1: Server-side AQM

Server

Clients
7

The cost of packet processing is comparable to the 
service time

Packet
processing

Request
execution

≈

Request



Strawman #2: Client Rate limiting

Server

Clients
8

Request



Server

Clients
8

Request

Probing server status incur high message overhead

Hey server, are you busy?

Hey server, are you busy?

Hey server, are you busy?

Hey server, are you busy?

Strawman #2: Client Rate limiting



Breakwater

9

Overload control scheme for μs-scale RPCs

Components Benefits

1. Credit-based admission control Coordinates requests with 
minimum delay

2. Demand speculation Minimizes message overhead

3. Delay-based AQM Ensures low tail latency



Breakwater’s benefits

0
200
400
600
800

0 0.4 0.8 1.2 1.6

Th
ro

ug
hp

ut
 

(k
re

qs
/s

)

Clients' Demand (Mreqs/s)

0
200
400
600
800

1,000

0 0.4 0.8 1.2 1.6
99

%
-il

e
La

te
nc

y 
(μ

s)
Clients' Demand (Mreqs/s)

IdealBreakwater

SLO

10

(1) High throughput
(2) Low and bounded tail latency
(3) Scalability to a large number of clients

Handles server overload with μs-scale RPCs with



Queueing delay as congestion signal

Server

Clients RequestCredit Response
11



Server

Clients

For every RTT:
If delay < target:
credit += A

Else:
B = MAX(1 − β � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡

𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡
, 0.5)

credit ×= B

RequestCredit Response
12

Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests 
with credits



Server

Clients RequestCredit Response
13

register

Client 1
Client 2
Client 3
Client 4

Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests 
with credits



Server

Clients RequestCredit Response
13

Client 1
Client 2
Client 3
Client 4

Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests 
with credits



Server

Clients RequestCredit Response
13

deregister

Client 1
Client 2
Client 3
Client 4

Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests 
with credits



Demand Message Overhead

Server

Clients RequestCredit Response

Server needs to know which client has demand

14

Client 1
Client 2
Client 3
Client 4



Server

Clients RequestCredit Response
14

Demand Message Overhead
Server needs to know which client has demand



Server

Clients

I have n requests!

RequestCredit Response
14

Demand Message Overhead
Server needs to know which client has demand



0

200

400

600

800

0 0.4 0.8 1.2 1.6

Th
ro

ug
hp

ut
 

(k
re

qs
/s

)

Clients' Demand (Mreqs/s)

0
200
400
600
800

1,000

0 0.4 0.8 1.2 1.6

99
%

-il
e 

La
te

nc
y 

(μ
s)

Clients' Demand (Mreqs/s)

No overload control Idealcredit

SLO

Credit-based admission control has lower and bounded 
tail latency but lower throughput.

15

Impact of Credit-based Admission Control



Piggybacking Demand Information

Server

Clients

I have n requests!

RequestCredit Response

Breakwater piggybacks clients’ demand 
information into requests.

16



Server

Clients

I have n requests!

RequestCredit Response

(I have n more request)

16

Piggybacking Demand Information
Breakwater piggybacks clients’ demand 
information into requests.



Server

Clients RequestCredit Response
17

Comp. #2: Demand Speculation
Breakwater speculate clients’ demand to minimize 
message overhead



Server

Clients RequestCredit Response
17

Comp. #2: Demand Speculation
Breakwater speculate clients’ demand to minimize 
message overhead



Server

Clients RequestCredit Response
17

Comp. #2: Demand Speculation
Breakwater speculate clients’ demand to minimize 
message overhead



Idealcredit credit + demand spec.

0

200

400

600

800

0 0.4 0.8 1.2 1.6

Th
ro

ug
hp

ut
 

(k
re

qs
/s

)

Clients' Demand (Mreqs/s)

No overload control

0
200
400
600
800

1,000

0 0.4 0.8 1.2 1.6

99
%

-il
e 

La
te

nc
y 

(μ
s)

Clients' Demand (Mreqs/s)
18

Demand speculation improves throughput with 
higher tail latency

SLO

Impact of Adding Demand Speculation



Credit Overcommitment

Server

Clients RequestCredit Response
19

Server issues more credit than the number of 
requests it can accomodate



Incast Causing Long Queue

Server

Clients RequestCredit Response
19

With credit overcommitment, multiple requests 
may arrive at the server at the same time



Comp. #3: Delay-based AQM

Server

Clients RequestCredit Response
19

To ensure low tail latency, the server drops 
requests if queueing delay exceeds threshold.

drop



Server

Clients RequestCredit Response
19

drop

Comp. #3: Delay-based AQM
To ensure low tail latency, the server drops 
requests if queueing delay exceeds threshold.



Impact of Adding Delay-based AQM

0

200

400

600

800

0 0.4 0.8 1.2 1.6

Th
ro

ug
hp

ut
 

(k
re

qs
/s

)

Clients' Demand (Mreqs/s)

0
200
400
600
800

1,000

0 0.4 0.8 1.2 1.6
99

%
-il

e 
La

te
nc

y 
(μ

s)
Clients' Demand (Mreqs/s)

Ideal
credit

credit + demand spec.
No overload control

credit + demand spec. + AQM

20

SLO

Breakwater achieves high throughput and low and 
bounded tail latency at the same time



Testbed Setup
- xl170 in Cloudlab
- 11 machines are connected to a single switch
- 10 client machines / 1 server machine
- Implementation on Shenango as a RPC layer

Synthetic Workload
- Clients generate request with open-loop Poisson process
- Requests spin-loops specified amount of time at server
- Exponential service time distribution with 10μs average

Evaluation

21



(1) Does Breakwater achieves high throughput and low tail 
latency even with demand spikes?

(2) Does Breakwater provides fast notification for the rejected 
requests?

(3) Is Breakwater scalable to many clients?

Evaluation

22

Baselines:
DAGOR

priority-based overload control used in WeChat
SEDA

adaptive overload control for staged event-driven architecture



High Goodput with Fast Convergence

0
400
800

1,200

0 2 4 6 8 10

G
oo

dp
ut

 
(k

re
qs

/s
)

Time (seconds)

Breakwater DAGOR SEDA Load Ideal

0.5 s
1.6 s

23

Breakwater converges to higher goodput 25x faster than 
DAGOR and 79x faster than SEDA.

0
400
800

1,200
D

em
an

d
(k

re
qs

/s
)

Capacity



Low and Bounded Tail Latency

0.01
0.1

1
10

100
1000

0 2 4 6 8 10

99
%

-il
e

La
te

nc
y 

(m
s)

Time (seconds)

SLO

Breakwater DAGOR SEDA

24

Breakwater maintains low tail latency even with load 
spikes.

0
400
800

1,200
D

em
an

d
(k

re
qs

/s
)

Capacity



Fast Notification of Reject

0.01
0.1

1
10

100
1000

0 2 4 6 8 10M
ea

n 
Re

je
ct

 
D

el
ay

 (m
s)

Time (seconds)

SLO

Breakwater DAGOR

25

Breakwater notifies rejected request to clients before 
violating its SLO.

0
400
800

1,200
D

em
an

d
(k

re
qs

/s
)

Capacity



Scalability to Many Clients

0
200
400
600
800

1000

100 1k 10kG
oo

dp
ut

 (k
re

qs
/s

)

The number of clients

Breakwater DAGOR SEDA

+10%

26

Breakwater easily scales to 10,000 clients.



• Breakwater is a server-driven credit-based overload 
control system for μs-scale RPCs

d

• Breakwater’s key components include
(1) Credit-based admission control
(2) Demand speculation
(3) Delay-based AQM

D

• Our evaluation shows that Breakwater achieves
(1) Low & bounded tail latency with high throughput
(2) Fast notification for a rejected request
(3) Scalability to many clients

27

Conclusion



Thank you!

Questions?
Inho Cho <inhocho@csail.mit.edu>

28

inhocho89.github.io/breakwater/
Breakwater is available at 


	Overload Control for�μs-scale RPCs with Breakwater
	Trend: μs-scale RPCs
	Trend: High Fan-out
	Causes of Server Overload
	Performance Without Overload Control
	Ideal Overload Control
	Strawman #1: Server-side AQM
	Strawman #1: Server-side AQM
	Strawman #1: Server-side AQM
	Strawman #2: Client Rate limiting
	Strawman #2: Client Rate limiting
	Breakwater
	Breakwater’s benefits
	Queueing delay as congestion signal
	Comp. #1: Credit-based admission control
	Comp. #1: Credit-based admission control
	Comp. #1: Credit-based admission control
	Comp. #1: Credit-based admission control
	Demand Message Overhead
	Demand Message Overhead
	Demand Message Overhead
	Impact of Credit-based Admission Control
	Piggybacking Demand Information
	Piggybacking Demand Information
	Comp. #2: Demand Speculation
	Comp. #2: Demand Speculation
	Comp. #2: Demand Speculation
	Impact of Adding Demand Speculation
	Credit Overcommitment
	Incast Causing Long Queue
	Comp. #3: Delay-based AQM
	Comp. #3: Delay-based AQM
	Impact of Adding Delay-based AQM
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Thank you!

