Building a Protocol validator for B2B Communications

Rudi van Drunen Rix Groenboom

Protocol validator | Agenda

- Business problem
- Solution
- Architecture
- Building (certificates)
- Issues encountered
- Lessons learned

Validator | The business problem

Deregulation of the Dutch Utility market

- Communication structure transition
 - Peer to Central
 - Peer-to-Peer

How do we make sure this is working?

Solution | Certification

- Make sure all comms work
 - Certify all communication paths
- One central place for certification
 - All peers need to obtain certification
 - Protocol run-through
 - Both directions

Validator | Certification machine

- Define the protocol
 - Define the test set (roles)
- Establish a PKI
- Build the infrastructure and software
- Have all partners go through the procedure
 - All peers need to obtain certification

Validator | The Workflow

Validator | Protocols

- Message standard
 - Messages are encoded in XML
 - Transported over as2 (MIME encoded)
 - Authentication and Encryption
 - Wire protocol: https

System | Components

- Frontend
 - Ultra ESB (Adroitlogic)
 - Open Source Enterprise Service Bus
- Validator
 - Virtualize (Parasoft)
 - Service virtualization component
- Protocol analyzer: custom Python
- GUI: custom Java

System | Architecture

System | Infrastructure

- Windows 2008 server
- MySQL
- Eclipse
- Python
- Firewall tools

Validator | Tooling

- Eclipse development environment
- Mendelsson as2 simulator
- Keystore Explorer

Validator | Total System

Building | Problems encountered

- sync / async messages
 - extra http header (gnd)
- Sequence of messages
 - validator code / database
- PKI
 - certificate aliases
 - multiple levels / keystores

Building | Certificates (1)

- Wire level
 - https server certificate
 - data (as2 endpoint) channel
 - control (web portal) channel
- Global PKI and CA
 - Authentication of server
 - Encryption of data

Validator | ssl

Building | Certificates (2)

- as2 level
- Private PKI
 - Authentication of trading partner
 - Encryption of the payload
 - MIME encoding
 - Make sure the partner has the right CA

Validator | Certificates

Building | Setup

- Test using Mendelsson
 - as2 simulator
 - Technical connection test
 - connect to frontend bus
 - send an (encrypted) message
 - receive an (encrypted) message
- Management of keystores
 - different keystores, different certificates, aliases

Building | Experiences

- Rapid prototyping
 - Off-the-shelf components
 - Not much coding needed

- Protocol was not completely fixed
 - Definition of test messages (xml)
 - Definition of test scenarios (sequence)

Building | Experiences

- Certificates
 - 2 levels
 - 2- step debugging
- PKI is difficult to understand
 - Certificate aliases

Building | Experiences

- Fast turn-around time
 - 3 weeks from start to prototype

- Communication to a lot of partners
 - Different backends

- Bugs in the components
 - Java logging / messages

Building | Lessons learned

- Architecture is important
 - modular design
 - reuse in mind
- COTS components
 - selection of the components
- XSD changes
- PKI

Building | Lessons learned

- Infrastructure
 - readyness, completeness
- Time schedule
 - Allow for debugging while in operation
- External partners
 - All wait until the last moment to get certified
 - All have different systems
 - Communication

Building | Summary

- Validating B2B communications in a deregulated utility business
 - Rapid prototyping using COTS
 - Flexible in Protocol
 - re-usable
 - Generic system for protocol validation
- As of 11/20/2012 all partners (>36) certified.

Questions | Lessons learned

R.van.Drunen@xs4all.nl