

SD Codes:
Erasure Codes Designed for

How Storage Systems Really Fail

James S. Plank
University of Tennessee

USENIX FAST
San Jose, CA

February 13, 2013.

Authors

Jim Plank
Tennessee

Liberation Codes
Rotated RS Codes

Jerasure

Mario Blaum
(IBM Almaden)

EVENODD Codes
Blaum-Roth Codes

Generalized EO & RDP
PMDS

Jim Hafner
IBM Almaden

WEAVER Codes
HoVer Codes
REO Engine

Erasure Codes are Everywhere

• Commercial systems:

– From IBM, Microsoft, HP, Netapp, Panasas,
EMC, Cleversafe, Amazon, etc...

• Non Commercial Systems:

– HAIL, Tahoe-LAFS, Pergamum, POTSHARDS,
Oceanstore, NC-Cloud, Hydra, etc...

• All employ erasure codes that tolerate more
than one disk failure.

The RAID-6 Disconnect

P

Let's start with a RAID-5 system composed of n disks.

The catastrophic failure mode is a disk failure
combined with a latent sector failure.

P

The RAID-6 solution dedicates an entire extra disk
to coding to handle that failed block.

P Q

This seems wasteful.

The SD Code Methodology

Fixes the RAID-6 disconnect (m=1, s=1):

Dedicate m disks and s sectors per stripe to coding.

m = 2s = 2

Tolerates the failure of any m disks and s sectors.

m = 2s = 2

Thus, storage costs match failure modes.

P

In This Talk

• Detail the SD methodology in FAST language.

– How it works.

– Constructions.

– Performance (theoretical & actual).

– Open source support.

– Related work.

Two Views of a “Stripe”

• The Theoretical View:
– Disks hold w-bit symbols rather than sectors.

– Precisely: r symbols from each of n disks:

w-bit
symbol

n disks

r
symbols

per
disk

Two Views of a “Stripe”

• The Systems View:
– Disks hold sectors/blocks rather than symbols.

– Groups together theoretical stripes for performance.

Theoretical
stripe

Presentation of SD Codes

• Uses the Theoretical view to define the code.
• With the understanding that you map it to the

systems view when you implement it.

w-bit
symbol

n disks

r
symbols

per
disk

m coding
disks

s coding
symbols

Presentation of SD Codes

• The goal is to tolerate any m disk failures,
coupled with any additional s block failures.

n disks

r
symbols

per
disk

m coding
disks

s coding
symbols

w-bit
symbol

Code Definition

• There are mr separate coding equations that
involve only rows of the stripes: Ci,j

w-bit
symbol

n disks

r
symbols

per
disk

m coding
disks

s coding
symbols

C0,0

C0,1

C1,0

etc.

Code Definition

• Plus s more equations that involve all of the
symbols in the stripe: Sx

n disks

m coding
disks

s coding
symbols

S1

S0

w-bit
symbol

Code Defi nition

• All arithmetic is in a Galois Field GF(2w)

– Just like Reed-Solomon coding

– Open source libraries (See Friday's Talk)

– Larger w are slower.

– But larger w yield more codes with the SD
property.

• Each equation governed by a different
coefficient ai.

Example: n=6, m=2, s=2, r=4, ai = 2i

Each Ci,j equation is the sum of exactly n terms,
partitioned by rows.

Example: n=6, m=2, s=2, r=4, ai = 2i

Each Sx equation is the sum of all nr terms.

Decoding

• Recall that there are mr+s equations.
• When m disks and s sectors fail, you lose mr+s

symbols in the stripe.
• That gives you:

mr+s equations with mr+s unknowns.

• Use standard algebra to solve.
• (We went over this in yesterday's tutorial.)

Encoding

• It's just a special case of decoding.
• For that reason, the location of the coding

symbols is really arbitrary.

w-bit
symbo

l

n disks

r
symbols

per
disk

m coding
disks

s coding
symbols

SD Code Constructions

• Given n, m, s and r.

• Our goal is to find m+s coefficients ai such that
every combination of m disk and s sector
failures may be tolerated in GF(2w), where:

– w = 8 is preferred (because it's fastest),
– Then w = 16,
– Then w = 32.

SD Code Constructions

• When ai = 2i, we have some theory, which
allows us to test a stricter, PMDS condition.
– We call this the “Main Construction.”

• Otherwise, we simply test all failure scenarios.

• Do it with brute-force enumeration.
– (I made it a lab in my CS302 Algorithms course)

of these.

SD Code Constructions

• When m = 1 and s = 1, the main construction
is PMDS (therefore SD) when n ≤ 2w.

– This is the RAID-6 replacement.

– w = 8 handles 256-disk systems.

• When m > 1 and s = 1, the main construction
is PMDS (therefore SD) when nr ≤ 2w.

Otherwise...

They exist,
but not
in any
general
form.

Properties: Storage Overhead

• Pretty obvious, but also pretty drastic.

Properties: Update Penalty

• Roughly 2m+s – not too good.
• Applicable to cloud/log-based systems.

w-bit
symbo

l

n disks

r
symbols

per
disk

m coding
disks

s coding
symbols

Properties: Encoding Speed

• 32M stripes. Intel Core i7, 3.02 GHz.
• Using SSE for GF Arithmetic (Friday)

r = 16

Properties: Encoding Speed

Jagged lines are when you switch
between values of w.

r = 16

Properties: Decoding Speed

Up to m failures per row equals
Reed-Solomon Speed

r = 16

Properties: Decoding Speed

For maximum failures, decoding
speed equals encoding speed.

r = 16

Bottom line

Sure, it's slower than RS coding, but
its faster than using extra coding disks.

The RAID 6 Replacement RAID-6

Open Source Code

• SD Programs available from my web site (C).
• Includes encoder/decoder, plus all the

constructions from the big yucky picture.
• Fast SSE.
• Doesn't

implement
RAID – intent
is to be a first
building
block.

• Releasing on
Friday.

Related Work

• “Couldn't I just use a (n,n-m-s) Reed-
Solomon code?”

• Yes, but:
– Then all coding symbols are functions of all of

the data words.

– Update penalty is all coding blocks.

– Decoding the common case is expensive.

• “Intradisk Redundancy” [Dholakia, 2009]
– Reduced failure coverage.

Related Work – Two recent codes

• PMDS Codes
– IBM

– IEEE Transactions on
Information Theory,
2013.

– Same methodology as
SD codes, but with
enhanced theory for
verifying constructions.

• LRC Codes
– Microsoft Azure

– USENIX ATC 2012.

– Intended model is for
systems where each
block is on a different
disk.

– Current constructions
limited to m = 1.

Both codes are “maximally recoverable,” meaning
they tolerate more failure scenarios, with the SD

scenario being a subset (Overkill for RAID).

Conclusion

• New erasure-coding methodology to address the
failure mode of current storage systems.

• In particular, covers the RAID-6 failure mode
without the wasted storage.

• Yes, you've gotta eat some math, but I've got open-
source C code that does it all for you.
– The Galois Field arithmetic.

– The decoding equations.

– Constructions for n, r ≤ 24, m, s ≤ 3.

• Performance better than Reed-Solomon substitutes.

SD Codes:
Erasure Codes Designed for

How Storage Systems Really Fail

James S. Plank
University of Tennessee

USENIX FAST
San Jose, CA

February 13, 2013.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

