

SD Codes: Erasure Codes Designed for How Storage Systems Really Fail

James S. Plank University of Tennessee

> USENIX FAST San Jose, CA February 13, 2013.

Authors

Jim Plank Tennessee

Mario Blaum (IBM Almaden)

Jim Hafner IBM Almaden

WEAVER Codes
HoVer Codes
REO Engine

Erasure Codes are Everywhere

- Commercial systems:
 - From IBM, Microsoft, HP, Netapp, Panasas, EMC, Cleversafe, Amazon, etc...
- Non Commercial Systems:
 - HAIL, Tahoe-LAFS, Pergamum, POTSHARDS,
 Oceanstore, NC-Cloud, Hydra, etc...
- All employ erasure codes that tolerate more than one disk failure.

The RAID-6 Disconnect

Let's start with a RAID-5 system composed of *n* disks.

The catastrophic failure mode is a disk failure combined with a latent sector failure.

The RAID-6 solution dedicates an entire extra disk to coding to handle that failed block.

The SD Code Methodology

Dedicate *m* disks and *s* sectors per stripe to coding.

Tolerates the failure of any m disks and s sectors.

Thus, storage costs match failure modes.

Fixes the RAID-6 disconnect (m=1, s=1):

In This Talk

- Detail the SD methodology in FAST language.
 - How it works.
 - Constructions.
 - Performance (theoretical & actual).
 - Open source support.
 - Related work.

Two Views of a "Stripe"

- The Theoretical View:
 - Disks hold w-bit symbols rather than sectors.
 - Precisely: *r* symbols from each of *n* disks:

Two Views of a "Stripe"

- The Systems View:
 - Disks hold sectors/blocks rather than symbols.
 - Groups together theoretical stripes for performance.

Presentation of SD Codes

- Uses the Theoretical view to define the code.
- With the understanding that you map it to the systems view when you implement it.

Presentation of SD Codes

• The goal is to tolerate any *m* disk failures, coupled with any additional *s* block failures.

Code Definition

• There are mr separate coding equations that involve only rows of the stripes: $C_{i,j}$

Code Definition

• Plus s more equations that involve all of the symbols in the stripe: S_x

Code Def nition

- All arithmetic is in a Galois Field $GF(2^w)$
 - Just like Reed-Solomon coding
 - Open source libraries (See Friday's Talk)
 - Larger w are slower.
 - But larger w yield more codes with the SD property.
- Each equation governed by a different coefficient a_i .

Example: n=6, m=2, s=2, r=4, $a_i=2^i$

Each $C_{i,j}$ equation is the sum of exactly n terms, partitioned by rows.

Example: n=6, m=2, s=2, r=4, $a_i=2^i$

Each S_x equation is the sum of all nr terms.

Decoding

- Recall that there are mr+s equations.
- When m disks and s sectors fail, you lose mr+s symbols in the stripe.
- That gives you:

mr+s equations with mr+s unknowns.

- Use standard algebra to solve.
- (We went over this in yesterday's tutorial.)

Encoding

- It's just a special case of decoding.
- For that reason, the location of the coding symbols is really arbitrary.

SD Code Constructions

- Given n, m, s and r.
- Our goal is to find m+s coefficients a_i such that every combination of m disk and s sector failures may be tolerated in $GF(2^w)$, where:
 - -w = 8 is preferred (because it's fastest),
 - Then w = 16,
 - Then w = 32.

SD Code Constructions

- When $a_i = 2^i$, we have some theory, which allows us to test a stricter, PMDS condition.
 - We call this the "Main Construction."
- Otherwise, we simply test all failure scenarios.

$$\binom{n}{m} \binom{r(n-m)}{s}$$
 of these.

- Do it with brute-force enumeration.
 - (I made it a lab in my CS302 Algorithms course)

SD Code Constructions

- When m = 1 and s = 1, the main construction is PMDS (therefore SD) when $n \le 2^w$.
 - This is the RAID-6 replacement.
 - -w = 8 handles 256-disk systems.
- When m > 1 and s = 1, the main construction is PMDS (therefore SD) when $nr \le 2^w$.

Otherwise...

They exist, but not in any general form.

Properties: Storage Overhead

• Pretty obvious, but also pretty drastic.

Properties: Update Penalty

- Roughly 2m+s not too good.
- Applicable to cloud/log-based systems.

Properties: Encoding Speed

- 32M stripes. Intel Core i7, 3.02 GHz.
- Using SSE for GF Arithmetic (Friday)

Properties: Encoding Speed

Jagged lines are when you switch between values of w.

Properties: Decoding Speed

Up to *m* failures per row equals Reed-Solomon Speed

Properties: Decoding Speed

For maximum failures, decoding speed equals encoding speed.

Bottom line

Sure, it's slower than RS coding, but its faster than using extra coding disks.

Open Source Code

- SD Programs available from my web site (C).
- Includes encoder/decoder, plus all the constructions from the big yucky picture.
- Fast SSE.
- Doesn't implement RAID – intent is to be a first building block.
- Releasing on Friday.

Related Work

- "Couldn't I just use a (n,n-m-s) Reed-Solomon code?"
- Yes, but:
 - Then all coding symbols are functions of all of the data words.
 - Update penalty is all coding blocks.
 - Decoding the common case is expensive.
- "Intradisk Redundancy" [Dholakia, 2009]
 - Reduced failure coverage.

Related Work – Two recent codes

PMDS Codes

- IBM
- IEEE Transactions on Information Theory, 2013.
- Same methodology as SD codes, but with enhanced theory for verifying constructions.

LRC Codes

- Microsoft Azure
- USENIX ATC 2012.
- Intended model is for systems where each block is on a different disk.
- Current constructions limited to m = 1.

Both codes are "maximally recoverable," meaning they tolerate more failure scenarios, with the SD scenario being a subset (Overkill for RAID).

Conclusion

- New erasure-coding methodology to address the failure mode of current storage systems.
- In particular, covers the RAID-6 failure mode without the wasted storage.
- Yes, you've gotta eat some math, but I've got opensource C code that does it all for you.
 - The Galois Field arithmetic.
 - The decoding equations.
 - Constructions for $n, r \le 24, m, s \le 3$.
- Performance better than Reed-Solomon substitutes.

SD Codes: Erasure Codes Designed for How Storage Systems Really Fail

James S. Plank University of Tennessee

> USENIX FAST San Jose, CA February 13, 2013.