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Erasure Codes are Everywhere

• Commercial systems:

– From IBM, Microsoft, HP, Netapp, Panasas, 
EMC, Cleversafe, Amazon, etc...

• Non Commercial Systems:

– HAIL, Tahoe-LAFS, Pergamum, POTSHARDS, 
Oceanstore, NC-Cloud, Hydra, etc... 

• All employ erasure codes that tolerate more 
than one disk failure.



  

The RAID-6 Disconnect

P

Let's start with a RAID-5 system composed of n disks.

The catastrophic failure mode is a disk failure 
combined with a latent sector failure.

P

The RAID-6 solution dedicates an entire extra disk
to coding to handle that failed block.

P Q

This seems wasteful.



  

The SD Code Methodology

Fixes the RAID-6 disconnect (m=1, s=1):

Dedicate m disks and s sectors per stripe to coding.

m = 2s = 2

Tolerates the failure of any m disks and s sectors.

m = 2s = 2

Thus, storage costs match failure modes.

P



  

In This Talk

• Detail the SD methodology in FAST language.

– How it works.

– Constructions.

– Performance (theoretical & actual).

– Open source support.

– Related work.



  

Two Views of a “Stripe”

• The Theoretical View:
– Disks hold w-bit symbols rather than sectors.

– Precisely: r symbols from each of n disks:
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disk



  

Two Views of a “Stripe”

• The Systems View:
– Disks hold sectors/blocks rather than symbols.

– Groups together theoretical stripes for performance.

Theoretical
stripe



  

Presentation of SD Codes

• Uses the Theoretical view to define the code.
• With the understanding that you map it to the 

systems view when you implement it.
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Presentation of SD Codes

• The goal is to tolerate any m disk failures, 
coupled with any additional s block failures.
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Code Definition

• There are mr separate coding equations that 
involve only rows of the stripes: Ci,j
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Code Definition

• Plus s more equations that involve all of the 
symbols in the stripe: Sx

n disks

m coding 
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s coding
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Code Defi nition

• All arithmetic is in a Galois Field GF(2w)

– Just like Reed-Solomon coding

– Open source libraries (See Friday's Talk)

– Larger w are slower.

– But larger w yield more codes with the SD 
property.

• Each equation governed by a different 
coefficient ai.



  

Example: n=6, m=2, s=2, r=4, ai = 2i

Each Ci,j equation is the sum of exactly n terms,
partitioned by rows.



  

Example: n=6, m=2, s=2, r=4, ai = 2i

Each Sx equation is the sum of all nr terms.



  

Decoding

• Recall that there are mr+s equations.
• When m disks and s sectors fail, you lose mr+s 

symbols in the stripe.
• That gives you: 

mr+s equations with mr+s unknowns.

• Use standard algebra to solve.
• (We went over this in yesterday's tutorial.)



  

Encoding

• It's just a special case of decoding.
• For that reason, the location of the coding 

symbols is really arbitrary.
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SD Code Constructions

• Given n, m, s and r.

• Our goal is to find m+s coefficients ai such that 
every combination of m disk and s sector 
failures may be tolerated in GF(2w), where:

– w = 8 is preferred (because it's fastest),
– Then w = 16,
– Then w = 32.



  

SD Code Constructions

• When ai = 2i, we have some theory, which 
allows us to test a stricter, PMDS condition.
– We call this the “Main Construction.”

• Otherwise, we simply test all failure scenarios.

• Do it with brute-force enumeration.
– (I made it a lab in my CS302 Algorithms course)

of these.



  

SD Code Constructions

• When m = 1 and s = 1, the main construction 
is PMDS (therefore SD) when n ≤ 2w.

– This is the RAID-6 replacement.

– w = 8 handles 256-disk systems.

• When m > 1 and s = 1, the main construction 
is PMDS (therefore SD) when nr ≤ 2w. 



  

Otherwise...

They exist,
but not 
in any 
general
form.



  

Properties: Storage Overhead

• Pretty obvious, but also pretty drastic.



  

Properties: Update Penalty

• Roughly 2m+s – not too good.
• Applicable to cloud/log-based systems.
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Properties: Encoding Speed

• 32M stripes.  Intel Core i7, 3.02 GHz.
• Using SSE for GF Arithmetic (Friday)

r = 16



  

Properties: Encoding Speed

Jagged lines are when you switch 
between values of w.

r = 16



  

Properties: Decoding Speed

Up to m failures per row equals
Reed-Solomon Speed

r = 16



  

Properties: Decoding Speed

For maximum failures, decoding
speed equals encoding speed.

r = 16



  

Bottom line

Sure, it's slower than RS coding, but
its faster than using extra coding disks.

The RAID 6 Replacement RAID-6



  

Open Source Code

• SD Programs available from my web site (C).
• Includes encoder/decoder, plus all the 

constructions from the big yucky picture.
• Fast SSE.
• Doesn't 

implement 
RAID – intent 
is to be a first 
building 
block.

• Releasing on 
Friday.



  

Related Work

• “Couldn't I just use a (n,n-m-s) Reed-
Solomon code?”

• Yes, but:
– Then all coding symbols are functions of all of 

the data words.

– Update penalty is all coding blocks.

– Decoding the common case is expensive.

• “Intradisk Redundancy” [Dholakia, 2009]
– Reduced failure coverage.



  

Related Work – Two recent codes

• PMDS Codes
– IBM

– IEEE Transactions on 
Information Theory, 
2013.

– Same methodology as 
SD codes, but with 
enhanced theory for 
verifying constructions.

• LRC Codes
– Microsoft Azure

– USENIX ATC 2012.

– Intended model is for 
systems where each 
block is on a different 
disk.

– Current constructions 
limited to m = 1.

Both codes are “maximally recoverable,” meaning 
they tolerate more failure scenarios, with the SD 

scenario being a subset (Overkill for RAID).



  

Conclusion

• New erasure-coding methodology to address the 
failure mode of current storage systems.

• In particular, covers the RAID-6 failure mode 
without the wasted storage.

• Yes, you've gotta eat some math, but I've got open-
source C code that does it all for you.
– The Galois Field arithmetic.

– The decoding equations.

– Constructions for n, r ≤ 24, m, s ≤ 3.

• Performance better than Reed-Solomon substitutes.
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